# 3.2 Polynomial function  (Page 3/3)

 Page 3 / 3

## Identity function

The dependent (y) and independent (x) variables have same value. Identity function is similar in concept to that of identity relation which consists of relation of an element of a set with itself. It is a linear function in which m=1 and c=0. Identity function form is represented as :

$y=\mathrm{f\left(x\right)}=x$

The graph of identity function is a straight line bisecting first and third quadrants of coordinate system. Note that slope of straight line is 45°. It is clear from the graph that its domain and range both are real number set R.

The general form of quadratic function is :

$\mathrm{f\left(x\right)}=a{x}^{2}+bx+c;\phantom{\rule{1em}{0ex}}a,b,c\in R;\phantom{\rule{1em}{0ex}}a\ne 0$

We shall discuss quadratic function in detail in a separate module and hence discussion of this function is not taken up here.

## Graph of polynomial function

Graph of polynomial is continuous and non-periodic. If degree is greater than 1, then it is a non-linear graph. Polynomial graphs are analyzed with the help of function properties like intercepts, slopes, concavity, and end behaviors. The may or may not intersect x-axis. This means that it may or may not have real roots. As maximum number of roots of a polynomial is at the most equal to the order of polynomial, we can deduce that graph can at the most intersect x-axis “n” times as maximum numbers of real roots are “n”.

The fact that graph of polynomial is continuous suggests two interesting inferences :

1: If there are two values of polynomial f(a) and f(b) such that f(a)f(b)<0, then there are at least 1 or an odd numbers of real roots between a and b. The condition f(a)f(b)<0 means that function values f(a) and f(b) lie on the opposite sides of x-axis. Since graph is continuous, it is bound to cross x-axis at least once or odd times. As such, there are at least 1 or odd numbers of real roots (as shown in the left figure down).

2 : If there are two values of polynomial f(a) and f(b) such that f(a)f(b)>0, then there are either no real roots or there are even numbers of real roots between a and b. The condition f(a)f(b)>0 means that function values f(a) and f(b) are either both negative or both positive i.e. they lie on the same side of x - axis. Since graph is continuous, it may not cross at all or may cross x-axis even times (as shown in the right figure above). Clearly, there is either no real root or there are even numbers of real roots.

We shall study graphs of quadratic polynomials in a separate module. Further, other graphs will be discussed in appropriate context, while discussing a particular function. Here, we present two monomial quadratic graphs $y={x}^{2}$ and $y={x}^{3}$ . These graphs are important from the point of view of generalizing graphs of these particular polynomial structure. The nature of graphs $y={x}^{n}$ , where “n” is even integer greater than equal to 2, is similar to the graph of $y={x}^{2}$ . We should emphasize that the shape of curve simply generalizes the nature of graph – we need to draw them actually, if we want to draw graph of a particular monomial function. However, we shall find that these generalizations about nature of curve lets us know a great deal about the monomial polynomial. In particular, we can conclude that their domain and range are real number set R.

Similarly, the nature of graphs $y={x}^{n}$ , where “n” is odd number integer greater than 2, is similar to the graph of $y={x}^{3}$ .

are nano particles real
yeah
Joseph
Hello, if I study Physics teacher in bachelor, can I study Nanotechnology in master?
no can't
Lohitha
where we get a research paper on Nano chemistry....?
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
Ali
what are the products of Nano chemistry?
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
revolt
da
Application of nanotechnology in medicine
has a lot of application modern world
Kamaluddeen
yes
narayan
what is variations in raman spectra for nanomaterials
ya I also want to know the raman spectra
Bhagvanji
I only see partial conversation and what's the question here!
what about nanotechnology for water purification
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
What is power set
Period of sin^6 3x+ cos^6 3x
Period of sin^6 3x+ cos^6 3x