<< Chapter < Page Chapter >> Page >
A short description of the workings of an op-amp

Op-amp

The op-amp has four terminals to which connections can be made. Inputs attach to nodes a and b , and the output is node c . As the circuit model on the right shows, the op-amp serves as an amplifier for the difference ofthe input node voltages.

Op-amps not only have the circuit model shown in [link] , but their element values are very special.

  • The input resistance , R in , is typically large , on the order of 1 MΩ.
  • The output resistance , R out , is small , usually less than 100 Ω.
  • The voltage gain , G , is large , exceeding 10 5 .
The large gain catches the eye; it suggests that an op-amp could turn a 1 mV input signal into a 100 V one. If you were to buildsuch a circuit--attaching a voltage source to node a , attaching node b to the reference, and looking at the output--you would be disappointed. In dealing with electronic components, you cannotforget the unrepresented but needed power supply.
It is impossible for electronic components to yield voltagesthat exceed those provided by the power supply or for them to yield currents that exceed the power supply's rating.
Typical power supply voltages required for op-amp circuits are ± 15 V . Attaching the 1 mv signal not only would fail to produce a 100 V signal, the resulting waveform would beseverely distorted. While a desirable outcome if you are a rock&roll aficionado, high-quality stereos should not distort signals. Another consideration in designing circuits withop-amps is that these element values are typical: Careful control of the gain can only be obtained by choosing a circuitso that its element values dictate the resulting gain, which must be smaller than that provided by the op-amp.

Op-amp

The top circuit depicts an op-amp in a feedback amplifier configuration. On the bottom is the equivalent circuit, andintegrates the op-amp circuit model into the circuit.

Inverting amplifier

The feedback configuration shown in [link] is the most common op-amp circuit for obtaining what is knownas an inverting amplifier .

R F R out R out G R F 1 R out 1 R in 1 R L 1 R 1 R in 1 R F 1 R F v out 1 R v in
provides the exact input-output relationship. In choosing element values with respect to op-amp characteristics, we can simplify theexpression dramatically.
  • Make the load resistance, R L , much larger than R out . This situation drops the term 1 R L from the second factor of [link] .
  • Make the resistor, R , smaller than R in , which means that the 1 R in term in the third factor is negligible.
With these two design criteria, the expression( [link] ) becomes
R F R out G R F 1 R 1 R F 1 R F v out 1 R v out
Because the gain is large and the resistance R out is small, the first term becomes 1 G , leaving us with
1 G 1 R 1 R F 1 R F v out 1 R v in
  • If we select the values of R F and R so that G R R F , this factor will no longer depend on the op-amp's inherentgain, and it will equal 1 R F .
Under these conditions, we obtain the classic input-outputrelationship for the op-amp-based inverting amplifier.
v out R F R v in
Consequently, the gain provided by our circuit is entirely determined by our choice of the feedback resistor R F and the input resistor R . It is always negative, and can be less than one or greaterthan one in magnitude. It cannot exceed the op-amp's inherent gain and should not produce such large outputs that distortionresults (remember the power supply!). Interestingly, note that this relationship does not depend on the load resistance. Thiseffect occurs because we use load resistances large compared to the op-amp's output resistance. Thus observation meansthat, if careful, we can place op-amp circuits in cascade, without incurring the effect of succeeding circuits changing the behavior (transfer function)of previous ones; see this problem .

Questions & Answers

how did you get 1640
Noor Reply
If auger is pair are the roots of equation x2+5x-3=0
Peter Reply
Wayne and Dennis like to ride the bike path from Riverside Park to the beach. Dennis’s speed is seven miles per hour faster than Wayne’s speed, so it takes Wayne 2 hours to ride to the beach while it takes Dennis 1.5 hours for the ride. Find the speed of both bikers.
MATTHEW Reply
420
Sharon
from theory: distance [miles] = speed [mph] × time [hours] info #1 speed_Dennis × 1.5 = speed_Wayne × 2 => speed_Wayne = 0.75 × speed_Dennis (i) info #2 speed_Dennis = speed_Wayne + 7 [mph] (ii) use (i) in (ii) => [...] speed_Dennis = 28 mph speed_Wayne = 21 mph
George
Let W be Wayne's speed in miles per hour and D be Dennis's speed in miles per hour. We know that W + 7 = D and W * 2 = D * 1.5. Substituting the first equation into the second: W * 2 = (W + 7) * 1.5 W * 2 = W * 1.5 + 7 * 1.5 0.5 * W = 7 * 1.5 W = 7 * 3 or 21 W is 21 D = W + 7 D = 21 + 7 D = 28
Salma
Devon is 32 32​​ years older than his son, Milan. The sum of both their ages is 54 54​. Using the variables d d​ and m m​ to represent the ages of Devon and Milan, respectively, write a system of equations to describe this situation. Enter the equations below, separated by a comma.
Aaron Reply
find product (-6m+6) ( 3m²+4m-3)
SIMRAN Reply
-42m²+60m-18
Salma
what is the solution
bill
how did you arrive at this answer?
bill
-24m+3+3mÁ^2
Susan
i really want to learn
Amira
I only got 42 the rest i don't know how to solve it. Please i need help from anyone to help me improve my solving mathematics please
Amira
Hw did u arrive to this answer.
Aphelele
hi
Bajemah
-6m(3mA²+4m-3)+6(3mA²+4m-3) =-18m²A²-24m²+18m+18mA²+24m-18 Rearrange like items -18m²A²-24m²+42m+18A²-18
Salma
complete the table of valuesfor each given equatio then graph. 1.x+2y=3
Jovelyn Reply
x=3-2y
Salma
y=x+3/2
Salma
Hi
Enock
given that (7x-5):(2+4x)=8:7find the value of x
Nandala
3x-12y=18
Kelvin
please why isn't that the 0is in ten thousand place
Grace Reply
please why is it that the 0is in the place of ten thousand
Grace
Send the example to me here and let me see
Stephen
A meditation garden is in the shape of a right triangle, with one leg 7 feet. The length of the hypotenuse is one more than the length of one of the other legs. Find the lengths of the hypotenuse and the other leg
Marry Reply
how far
Abubakar
cool u
Enock
state in which quadrant or on which axis each of the following angles given measure. in standard position would lie 89°
Abegail Reply
hello
BenJay
hi
Method
I am eliacin, I need your help in maths
Rood
how can I help
Sir
hmm can we speak here?
Amoon
however, may I ask you some questions about Algarba?
Amoon
hi
Enock
what the last part of the problem mean?
Roger
The Jones family took a 15 mile canoe ride down the Indian River in three hours. After lunch, the return trip back up the river took five hours. Find the rate, in mph, of the canoe in still water and the rate of the current.
cameron Reply
Shakir works at a computer store. His weekly pay will be either a fixed amount, $925, or $500 plus 12% of his total sales. How much should his total sales be for his variable pay option to exceed the fixed amount of $925.
mahnoor Reply
I'm guessing, but it's somewhere around $4335.00 I think
Lewis
12% of sales will need to exceed 925 - 500, or 425 to exceed fixed amount option. What amount of sales does that equal? 425 ÷ (12÷100) = 3541.67. So the answer is sales greater than 3541.67. Check: Sales = 3542 Commission 12%=425.04 Pay = 500 + 425.04 = 925.04. 925.04 > 925.00
Munster
difference between rational and irrational numbers
Arundhati Reply
When traveling to Great Britain, Bethany exchanged $602 US dollars into £515 British pounds. How many pounds did she receive for each US dollar?
Jakoiya Reply
how to reduced echelon form
Solomon Reply
Jazmine trained for 3 hours on Saturday. She ran 8 miles and then biked 24 miles. Her biking speed is 4 mph faster than her running speed. What is her running speed?
Zack Reply
d=r×t the equation would be 8/r+24/r+4=3 worked out
Sheirtina
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Fundamentals of electrical engineering i. OpenStax CNX. Aug 06, 2008 Download for free at http://legacy.cnx.org/content/col10040/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Fundamentals of electrical engineering i' conversation and receive update notifications?

Ask