<< Chapter < Page Chapter >> Page >
A short description of the workings of an op-amp

Op-amp

The op-amp has four terminals to which connections can be made. Inputs attach to nodes a and b , and the output is node c . As the circuit model on the right shows, the op-amp serves as an amplifier for the difference ofthe input node voltages.

Op-amps not only have the circuit model shown in [link] , but their element values are very special.

  • The input resistance , R in , is typically large , on the order of 1 MΩ.
  • The output resistance , R out , is small , usually less than 100 Ω.
  • The voltage gain , G , is large , exceeding 10 5 .
The large gain catches the eye; it suggests that an op-amp could turn a 1 mV input signal into a 100 V one. If you were to buildsuch a circuit--attaching a voltage source to node a , attaching node b to the reference, and looking at the output--you would be disappointed. In dealing with electronic components, you cannotforget the unrepresented but needed power supply.
It is impossible for electronic components to yield voltagesthat exceed those provided by the power supply or for them to yield currents that exceed the power supply's rating.
Typical power supply voltages required for op-amp circuits are ± 15 V . Attaching the 1 mv signal not only would fail to produce a 100 V signal, the resulting waveform would beseverely distorted. While a desirable outcome if you are a rock&roll aficionado, high-quality stereos should not distort signals. Another consideration in designing circuits withop-amps is that these element values are typical: Careful control of the gain can only be obtained by choosing a circuitso that its element values dictate the resulting gain, which must be smaller than that provided by the op-amp.

Op-amp

The top circuit depicts an op-amp in a feedback amplifier configuration. On the bottom is the equivalent circuit, andintegrates the op-amp circuit model into the circuit.

Inverting amplifier

The feedback configuration shown in [link] is the most common op-amp circuit for obtaining what is knownas an inverting amplifier .

R F R out R out G R F 1 R out 1 R in 1 R L 1 R 1 R in 1 R F 1 R F v out 1 R v in
provides the exact input-output relationship. In choosing element values with respect to op-amp characteristics, we can simplify theexpression dramatically.
  • Make the load resistance, R L , much larger than R out . This situation drops the term 1 R L from the second factor of [link] .
  • Make the resistor, R , smaller than R in , which means that the 1 R in term in the third factor is negligible.
With these two design criteria, the expression( [link] ) becomes
R F R out G R F 1 R 1 R F 1 R F v out 1 R v out
Because the gain is large and the resistance R out is small, the first term becomes 1 G , leaving us with
1 G 1 R 1 R F 1 R F v out 1 R v in
  • If we select the values of R F and R so that G R R F , this factor will no longer depend on the op-amp's inherentgain, and it will equal 1 R F .
Under these conditions, we obtain the classic input-outputrelationship for the op-amp-based inverting amplifier.
v out R F R v in
Consequently, the gain provided by our circuit is entirely determined by our choice of the feedback resistor R F and the input resistor R . It is always negative, and can be less than one or greaterthan one in magnitude. It cannot exceed the op-amp's inherent gain and should not produce such large outputs that distortionresults (remember the power supply!). Interestingly, note that this relationship does not depend on the load resistance. Thiseffect occurs because we use load resistances large compared to the op-amp's output resistance. Thus observation meansthat, if careful, we can place op-amp circuits in cascade, without incurring the effect of succeeding circuits changing the behavior (transfer function)of previous ones; see this problem .

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Fundamentals of electrical engineering i. OpenStax CNX. Aug 06, 2008 Download for free at http://legacy.cnx.org/content/col10040/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Fundamentals of electrical engineering i' conversation and receive update notifications?

Ask