<< Chapter < Page Chapter >> Page >
This module summarizes the key concepts of transfer functions and includes examples of using transfer functions.

If the source consists of two (or more) signals, we know from linear system theory that the output voltage equalsthe sum of the outputs produced by each signal alone. In short, linear circuits are a special case of linear systems, andtherefore superposition applies. In particular, suppose these component signals are complex exponentials, each of which has afrequency different from the others. The transfer function portrays how the circuit affects the amplitude and phase of eachcomponent, allowing us to understand how the circuit works on a complicated signal. Those components having a frequency lessthan the cutoff frequency pass through the circuit with little modification while those having higher frequencies aresuppressed. The circuit is said to act as a filter , filtering the source signal based on the frequency of eachcomponent complex exponential. Because low frequencies pass through the filter, we call it a lowpass filter to express more precisely its function.

We have also found the ease of calculating the output forsinusoidal inputs through the use of the transfer function. Once we find the transfer function, we can write the output directlyas indicated by the output of a circuit for a sinusoidal input .

Rl circuit

Let's apply these results to a final example, in which the input is a voltage source and the output is the inductorcurrent. The source voltage equals V in 2 2 60 t 3 . We want the circuit to pass constant (offset) voltageessentially unaltered (save for the fact that the output is a current rather than a voltage) and remove the 60 Hz term.Because the input is the sum of two sinusoids--a constant is a zero-frequency cosine--our approach is

  1. find the transfer function using impedances;
  2. use it to find the output due to each input component;
  3. add the results;
  4. find element values that accomplish our design criteria.
Because the circuit is a series combination of elements, let's use voltage divider to find the transfer function between V in and V , then use the v-i relation of the inductor to find its current.
I out V in 2 f L R 2 f L 1 2 f L 1 2 f L R H f
where voltage divider 2 f L R 2 f L and inductor admittance 1 2 f L [Do the units check?] The formof this transfer function should be familiar; it is a lowpass filter, and it willperform our desired function once we choose element values properly.

The constant term is easiest to handle. The output is given by 3 H 0 3 R . Thus, the value we choose for the resistance will determinethe scaling factor of how voltage is converted into current. For the 60 Hz component signal, the output current is 2 H 60 2 60 t H 60 . The total output due to our source is

i out 2 H 60 2 60 t H 60 3 H 0
The cutoff frequency for this filter occurs when the real andimaginary parts of the transfer function's denominator equal each other. Thus, 2 f c L R , which gives f c R 2 L . We want this cutoff frequency to be much less than 60 Hz.Suppose we place it at, say, 10 Hz. This specification would require the component values to be related by R L 20 62.8 . The transfer function at 60 Hz would be
1 2 60 L R 1 R 1 6 1 1 R 1 37 0.16 1 R
which yields an attenuation (relative to the gain at zero frequency) of about 1 6 , and result in an output amplitude of 0.3 R relative to the constant term's amplitude of 3 R . A factor of 10 relative size between the two components seemsreasonable. Having a 100 mH inductor would require a 6.28 Ω resistor. An easily available resistor value is 6.8Ω; thus, this choice results in cheaply and easily purchased parts. To make the resistance bigger would require aproportionally larger inductor. Unfortunately, even a 1 H inductor is physically large; consequently low cutofffrequencies require small-valued resistors and large-valued inductors. The choice made here represents only onecompromise.

The phase of the 60 Hz component will very nearly be 2 , leaving it to be 0.3 R 2 60 t 2 0.3 R 2 60 t . The waveforms for the input and output are shown in [link] .

Waveforms

Input and output waveforms for the example R L circuit when the element values are R 6.28 and L 100 mH .

Note that the sinusoid's phase has indeed shifted; the lowpass filter not only reduced the 60 Hz signal's amplitude, but alsoshifted its phase by 90°.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Fundamentals of electrical engineering i. OpenStax CNX. Aug 06, 2008 Download for free at http://legacy.cnx.org/content/col10040/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Fundamentals of electrical engineering i' conversation and receive update notifications?

Ask