<< Chapter < Page Chapter >> Page >
A diagram is shown that depicts a vertical upward-facing arrow that lies to the left of all the other portions of the diagram and is labeled, “E.” To the immediate right of the midpoint of the arrow are two circles each labeled with a positive sign, the letter S, and the phrase, “Atomic orbitals.” These are followed by a right-facing horizontal arrow that points to the same two circles labeled with plus signs, but they are now touching and are labeled, “Combine atomic orbitals.” Two right-facing arrows lead to the last portion of the diagram, one facing upward and one facing downward. The upper arrow is labeled, “Subtract,” and points to two oblong ovals labeled with plus signs, and the phrase, “Antibonding orbitals sigma subscript s superscript asterisk.” The lower arrow is labeled, “Add,” and points to an elongated oval with two plus signs that is labeled, “Bonding orbital sigma subscript s.” The heading over the last section of the diagram are the words, “Molecular orbitals.”
Sigma (σ) and sigma-star (σ*) molecular orbitals are formed by the combination of two s atomic orbitals. The plus (+) signs indicate the locations of nuclei.

In p orbitals, the wave function gives rise to two lobes with opposite phases, analogous to how a two-dimensional wave has both parts above and below the average. We indicate the phases by shading the orbital lobes different colors. When orbital lobes of the same phase overlap, constructive wave interference increases the electron density. When regions of opposite phase overlap, the destructive wave interference decreases electron density and creates nodes. When p orbitals overlap end to end, they create σ and σ* orbitals ( [link] ). If two atoms are located along the x -axis in a Cartesian coordinate system, the two p x orbitals overlap end to end and form σ px (bonding) and σ p x * (antibonding) (read as "sigma-p-x" and "sigma-p-x star," respectively). Just as with s -orbital overlap, the asterisk indicates the orbital with a node between the nuclei, which is a higher-energy, antibonding orbital.

Two horizontal rows of diagrams are shown. The upper diagram shows two equally-sized peanut-shaped orbitals with a plus sign in between them connected to a merged orbital diagram by a right facing arrow. The merged diagram has a much larger oval at the center and much smaller ovular orbitals on the edge. It is labeled, “sigma subscript p x.” The lower diagram shows two equally-sized peanut-shaped orbitals with a plus sign in between them connected to a split orbital diagram by a right facing arrow. The split diagram has a much larger oval at the outer ends and much smaller ovular orbitals on the inner edges. It is labeled, “sigma subscript p x superscript asterisk”.
Combining wave functions of two p atomic orbitals along the internuclear axis creates two molecular orbitals, σ p and σ p * .

The side-by-side overlap of two p orbitals gives rise to a pi (π) bonding molecular orbital and a π* antibonding molecular orbital , as shown in [link] . In valence bond theory, we describe π bonds as containing a nodal plane containing the internuclear axis and perpendicular to the lobes of the p orbitals, with electron density on either side of the node. In molecular orbital theory, we describe the π orbital by this same shape, and a π bond exists when this orbital contains electrons. Electrons in this orbital interact with both nuclei and help hold the two atoms together, making it a bonding orbital. For the out-of-phase combination, there are two nodal planes created, one along the internuclear axis and a perpendicular one between the nuclei.

Two horizontal rows of diagrams are shown. The upper and lower diagrams both begin with two vertical peanut-shaped orbitals with a plus sign in between followed by a right-facing arrow. The upper diagram shows the same vertical peanut orbitals bending slightly away from one another and separated by a dotted line. It is labeled, “pi subscript p superscript asterisk.” The lower diagram shows the horizontal overlap of the two orbitals and is labeled, “pi subscript p.”
Side-by-side overlap of each two p orbitals results in the formation of two π molecular orbitals. Combining the out-of-phase orbitals results in an antibonding molecular orbital with two nodes. One contains the internuclear axis, and one is perpendicular to the axis. Combining the in-phase orbitals results in a bonding orbital. There is a node (blue) containing the internuclear axis with the two lobes of the orbital located above and below this node.

In the molecular orbitals of diatomic molecules, each atom also has two sets of p orbitals oriented side by side ( p y and p z ), so these four atomic orbitals combine pairwise to create two π orbitals and two π* orbitals. The π py and π p y * orbitals are oriented at right angles to the π pz and π p z * orbitals. Except for their orientation, the π py and π pz orbitals are identical and have the same energy; they are degenerate orbitals    . The π p y * and π p z * antibonding orbitals are also degenerate and identical except for their orientation. A total of six molecular orbitals results from the combination of the six atomic p orbitals in two atoms: σ px and σ p x * , π py and π p y * , π pz and π p z * .

Questions & Answers

Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
how do you find theWhat are the wavelengths and energies per photon of two lines
caroline Reply
The eyes of some reptiles are sensitive to 850 nm light. If the minimum energy to trigger the receptor at this wavelength is 3.15 x 10-14 J, what is the minimum number of 850 nm photons that must hit the receptor in order for it to be triggered?
razzyd Reply
A teaspoon of the carbohydrate sucrose contains 16 calories, what is the mass of one teaspoo of sucrose if the average number of calories for carbohydrate is 4.1 calories/g?
ifunanya Reply
4. On the basis of dipole moments and/or hydrogen bonding, explain in a qualitative way the differences in the boiling points of acetone (56.2 °C) and 1-propanol (97.4 °C), which have similar molar masses
Kyndall Reply
Calculate the bond order for an ion with this configuration: (?2s)2(??2s)2(?2px)2(?2py,?2pz)4(??2py,??2pz)3
Gabe Reply
Which of the following will increase the percent of HF that is converted to the fluoride ion in water? (a) addition of NaOH (b) addition of HCl (c) addition of NaF
Tarun Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Ut austin - principles of chemistry. OpenStax CNX. Mar 31, 2016 Download for free at http://legacy.cnx.org/content/col11830/1.13
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Ut austin - principles of chemistry' conversation and receive update notifications?

Ask