<< Chapter < Page Chapter >> Page >
Boiling points of silane and chlorosilanes at 760 mmHg (1 atmosphere).
Compound Boiling point (°C)
SiH 4 -112.3
SiH 3 Cl -30.4
SiH 2 Cl 2 8.3
SiHCl 3 31.5
SiCl 4 57.6

The reasons for the predominant use of SiHCl 3 in the synthesis of EGS are as follows:

  1. SiHCl 3 can be easily formed by the reaction of anhydrous hydrogen chloride with MGS at reasonably low temperatures (200 - 400 °C);
  2. it is liquid at room temperature so that purification can be accomplished using standard distillation techniques;
  3. it is easily handled and if dry can be stored in carbon steel tanks;
  4. its liquid is easily vaporized and, when mixed with hydrogen it can be transported in steel lines without corrosion;
  5. it can be reduced at atmospheric pressure in the presence of hydrogen;
  6. its deposition can take place on heated silicon, thus eliminating contact with any foreign surfaces that may contaminate the resulting silicon; and
  7. it reacts at lower temperatures (1000 - 1200 °C) and at faster rates than does SiCl 4 .

Chlorosilane (seimens) process

Trichlorosilane is synthesized by heating powdered MGS with anhydrous hydrogen chloride (HCl) at around 300 °C in a fluidized-bed reactor, [link] .

Since the reaction is actually an equilibrium and the formation of SiHCl 3 highly exothermic, efficient removal of generated heat is essential to assure a maximum yield of SiHCl 3 . While the stoichiometric reaction is that shown in Eq. 5, a mixture of chlorinated silanes is actually prepared which must be separated by fractional distillation, along with the chlorides of any impurities. In particular iron, aluminum, and boron are removed as FeCl 3 (b.p. = 316 °C), AlCl 3 (m.p. = 190 °C subl.), and BCl 3 (b.p. = 12.65 °C), respectively. Fractional distillation of SiHCl 3 from these impurity halides result in greatly increased purity with a concentration of electrically active impurities of less than 1 ppb.

EGS is prepared from purified SiHCl 3 in a chemical vapor deposition (CVD) process similar to the epitaxial growth of Si. The high-purity SiHCl 3 is vaporized, diluted with high-purity hydrogen, and introduced into the Seimens deposition reactor, shown schematically in [link] . Within the reactor, thin silicon rods called slim rods (ca. 4 mm diameter) are supported by graphite electrodes. Resistance heating of the slim rods causes the decomposition of the SiHCl 3 to yield silicon, as described by the reverse reaction shown in Eq. 5.

Schematic representation of a Seimens deposition reactor.

The shift in the equilibrium from forming SiHCl 3 from Si at low temperature, to forming Si from SiHCl 3 at high temperature is as a consequence of the temperature dependence ( [link] ) of the equilibrium constant ( [link] , where ρ = partial pressure) for [link] . Since the formation of SiHCl 3 is exothermic, i.e., ΔH<0, an increase in the temperature causes the partial pressure of SiHCl 3 to decrease. Thus, the Siemens process is typically run at ca. 1100 °C, while the reverse fluidized bed process is carried out at 300 °C.

The slim rods act as a nucleation point for the deposition of silicon, and the resulting polycrystalline rod consists of columnar grains of silicon (polysilicon) grown perpendicular to the rod axis. Growth occurs at less than 1 mm per hour, and after deposition for 200 to 300 hours high-purity (EGS) polysilicon rods of 150-200 mm in diameter are produced. For subsequent float-zone refining the polysilicon EGS rods are cut into long cylindrical rods. Alternatively, the as-formed polysilicon rods are broken into chunks for single crystal growth processes, for example Czochralski melt growth.

Questions & Answers

what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
what's microbiome?
john Reply
Microbiology is the scientific study of microorganisms
Ibra
the microorganisms in a particular environment (including the body or a part of the body).
Ibra
describe the bacterial cell
Akello
The biggest populations of microbes reside in the gut.other popular habitats include the skin genitals.The microbial cells and their genetic material ,the microbiome ,live with human from birth .
Zahreen
can agriculture be integrated into biology
David
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Chemistry of electronic materials. OpenStax CNX. Aug 09, 2011 Download for free at http://cnx.org/content/col10719/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry of electronic materials' conversation and receive update notifications?

Ask