<< Chapter < Page Chapter >> Page >
This module gives the appendices from Appendix I to Appendix XV

Appendix I.

S. Ramanujan

The great Indian mathematician, S. Ramanujan has left the sign of his brilliance in various fields of mathematics like Algebra, Geometry, Trigonometry, Calculus, Number theory etc. throughout his entire life. He has also made some extraordinary contributions to the fields like Hypergeometric series, Elliptic functions, Prime numbers, Bernoulli`s numbers, Divergent series, Continued fractions, Elliptic Modular equations, Highly Composite numbers, Riemann Zeta functions, Partition of numbers, Mock-Theta functions etc. Actually, apart from a few elementary ones, most of the contributions of S. Ramanujan belong to a higher realm of mathematics that is often referred to as "Higher Mathematics". In fact, one can find it quite difficult to understand S. Ramanujan`s mathematics if he does not have the basic foundation in various mathematical subjects.

Appendix II

Meghnad Saha (October 6, 1893 – February 16, 1956) was an Indian astrophysicist best known for his development of the Saha equation, used to describe chemical and physical conditions in stars.

The Saha ionization equation , also known as the Saha-Langmuir equation , was developed by the famous Indian astrophysicist Megh Nad Saha in 1920, and later (1923) by Irving Langmuir. One of the important applications of the equation was in explaining the spectral classification of stars. The equation is a result of combining ideas of quantum mechanics and statistical mechanics.

"Meghnad Saha’s ionization equation (c. 1920), which opened the door to stellar astrophysics” was one of the top ten achievements of 20th century Indian science [and] could be considered in the Nobel Prize class." - Jayant Narlikar

"The impetus given to astrophysics by Saha’s work can scarcely be overestimated, as nearly all later progress in this field has been influenced by it and much of the subsequent work has the character of refinements of Saha’s ideas." - S. Rosseland[4]

"He (Saha) was extremely simple, almost austere, in his habits and personal needs. Outwardly, he sometimes gave an impression of being remote, matter of fact, and even harsh, but once the outer shell was broken, one invariably found in him a person of extreme warmth, deep humanity, sympathy and understanding; and though almost altogether unmindful of his own personal comforts, he was extremely solicitous in the case of others. It was not in his nature to placate others. He was a man of undaunted spirit, resolute determination, untiring energy and dedication." - D. S. Kothari

Appendix III

Satyendra Nath Bose

(1 January 1894 – 4 February 1974), FRS , was an Indian physicist , specializing in mathematical physics . He is best known for his work on quantum mechanics in the early 1920s, providing the foundation for Bose-Einstein statistics and the theory of the Bose-Einstein condensate . He is honoured as the namesake of the boson .

Although more than one Nobel Prize was awarded for research related to the concepts of the boson , Bose-Einstein statistics and Bose-Einstein condensate—the latest being the 2001 Nobel Prize in Physics , which was given for advancing the theory of Bose-Einstein condensates—Bose himself was never awarded the Nobel Prize. Among his other talents, Bose spoke several languages and could also play the Esraj , a musical instrument similar to a violin .

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Solid state physics and devices-the harbinger of third wave of civilization. OpenStax CNX. Sep 15, 2014 Download for free at http://legacy.cnx.org/content/col11170/1.89
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Solid state physics and devices-the harbinger of third wave of civilization' conversation and receive update notifications?

Ask