# 29.3 Bohr’s theory of the hydrogen atom  (Page 7/14)

 Page 7 / 14

Explain how Bohr’s rule for the quantization of electron orbital angular momentum differs from the actual rule.

What is a hydrogen-like atom, and how are the energies and radii of its electron orbits related to those in hydrogen?

## Problems&Exercises

By calculating its wavelength, show that the first line in the Lyman series is UV radiation.

$\frac{1}{\lambda }=R\left(\frac{1}{{n}_{\text{f}}^{2}}-\frac{1}{{n}_{\text{i}}^{2}}\right)⇒\lambda =\frac{1}{R}\left[\frac{\left({n}_{\text{i}}\cdot {n}_{\text{f}}{\right)}^{2}}{{n}_{\text{i}}^{2}-{n}_{\text{f}}^{2}}\right];\phantom{\rule{0.25em}{0ex}}{n}_{\text{i}}=2,\phantom{\rule{0.25em}{0ex}}{n}_{\text{f}}=1,\phantom{\rule{0.25em}{0ex}}$ so that

$\lambda =\left(\frac{m}{1.097×{\text{10}}^{7}}\right)\left[\frac{\left(2×1{\right)}^{2}}{{2}^{2}-{1}^{2}}\right]=1\text{.}\text{22}×{\text{10}}^{-7}\phantom{\rule{0.25em}{0ex}}\text{m}=\text{122 nm}$ , which is UV radiation.

Find the wavelength of the third line in the Lyman series, and identify the type of EM radiation.

Look up the values of the quantities in ${a}_{\text{B}}=\frac{{h}^{2}}{{4\pi }^{2}{m}_{e}{\text{kq}}_{e}^{2}}{}^{}$ , and verify that the Bohr radius ${a}_{\text{B}}$ is $\text{0.529}×{\text{10}}^{-\text{10}}\phantom{\rule{0.25em}{0ex}}\text{m}$ .

${a}_{\text{B}}=\frac{{h}^{2}}{{4\pi }^{2}{m}_{e}{\text{kZq}}_{e}^{2}}=\frac{\left(\text{6.626}×{\text{10}}^{-\text{34}}\phantom{\rule{0.25em}{0ex}}\text{J·s}{\right)}^{2}}{{4\pi }^{2}\left(9.109×{\text{10}}^{-\text{31}}\phantom{\rule{0.25em}{0ex}}\text{kg}\right)\left(8.988×{\text{10}}^{9}\phantom{\rule{0.25em}{0ex}}\text{N}\text{·}{\text{m}}^{2}/{C}^{2}\right)\left(1\right)\left(1.602×{\text{10}}^{-\text{19}}\phantom{\rule{0.25em}{0ex}}\text{C}{\right)}^{2}}=\text{0.529}×{\text{10}}^{-\text{10}}\phantom{\rule{0.25em}{0ex}}\text{m}$

Verify that the ground state energy ${E}_{0}$ is 13.6 eV by using ${E}_{0}=\frac{{2\pi }^{2}{q}_{e}^{4}{m}_{e}{k}^{2}}{{h}^{2}}\text{.}$

If a hydrogen atom has its electron in the $n=4$ state, how much energy in eV is needed to ionize it?

0.850 eV

A hydrogen atom in an excited state can be ionized with less energy than when it is in its ground state. What is $n$ for a hydrogen atom if 0.850 eV of energy can ionize it?

Find the radius of a hydrogen atom in the $n=2$ state according to Bohr’s theory.

$\text{2.12}×{\text{10}}^{\text{–10}}\phantom{\rule{0.25em}{0ex}}\text{m}$

Show that $\left(13.6 eV\right)/\text{hc}=\text{1.097}×{\text{10}}^{7}\phantom{\rule{0.25em}{0ex}}\text{m}=R$ (Rydberg’s constant), as discussed in the text.

What is the smallest-wavelength line in the Balmer series? Is it in the visible part of the spectrum?

365 nm

It is in the ultraviolet.

Show that the entire Paschen series is in the infrared part of the spectrum. To do this, you only need to calculate the shortest wavelength in the series.

Do the Balmer and Lyman series overlap? To answer this, calculate the shortest-wavelength Balmer line and the longest-wavelength Lyman line.

No overlap

365 nm

122 nm

(a) Which line in the Balmer series is the first one in the UV part of the spectrum?

(b) How many Balmer series lines are in the visible part of the spectrum?

(c) How many are in the UV?

A wavelength of $4\text{.}\text{653 μm}$ is observed in a hydrogen spectrum for a transition that ends in the ${n}_{\text{f}}=5$ level. What was ${n}_{\text{i}}$ for the initial level of the electron?

7

A singly ionized helium ion has only one electron and is denoted ${\text{He}}^{+}$ . What is the ion’s radius in the ground state compared to the Bohr radius of hydrogen atom?

A beryllium ion with a single electron (denoted ${\text{Be}}^{3+}$ ) is in an excited state with radius the same as that of the ground state of hydrogen.

(a) What is $n$ for the ${\text{Be}}^{3+}$ ion?

(b) How much energy in eV is needed to ionize the ion from this excited state?

(a) 2

(b) 54.4 eV

Atoms can be ionized by thermal collisions, such as at the high temperatures found in the solar corona. One such ion is ${C}^{+5}$ , a carbon atom with only a single electron.

(a) By what factor are the energies of its hydrogen-like levels greater than those of hydrogen?

(b) What is the wavelength of the first line in this ion’s Paschen series?

(c) What type of EM radiation is this?

Verify Equations ${r}_{n}=\frac{{n}^{2}}{Z}{a}_{\text{B}}$ and ${a}_{B}=\frac{{h}^{2}}{{4\pi }^{2}{m}_{e}{\text{kq}}_{e}^{2}}=\text{0.529}×{\text{10}}^{-\text{10}}\phantom{\rule{0.25em}{0ex}}\text{m}$ using the approach stated in the text. That is, equate the Coulomb and centripetal forces and then insert an expression for velocity from the condition for angular momentum quantization.

$\frac{{\text{kZq}}_{e}^{2}}{{r}_{n}^{2}}=\frac{{m}_{e}{V}^{2}}{{r}_{n}}\text{,}$ so that ${r}_{n}=\frac{{\text{kZq}}_{e}^{2}}{{m}_{e}{V}^{2}}=\frac{{\text{kZq}}_{e}^{2}}{{m}_{e}}\frac{1}{{V}^{2}}\text{.}$ From the equation ${m}_{e}{\text{vr}}_{n}=n\frac{h}{2\pi }\text{,}$ we can substitute for the velocity, giving: ${r}_{n}=\frac{{\text{kZq}}_{e}^{2}}{{m}_{e}}\cdot \frac{{4\pi }^{2}{m}_{e}^{2}{r}_{n}^{2}}{{n}^{2}{h}^{2}}$ so that ${r}_{n}=\frac{{n}^{2}}{Z}\frac{{h}^{2}}{{4\pi }^{2}{m}_{e}{\text{kq}}_{e}^{2}}=\frac{{n}^{2}}{Z}{a}_{\text{B}},$ where ${a}_{\text{B}}=\frac{{h}^{2}}{{4\pi }^{2}{m}_{e}{\text{kq}}_{e}^{2}}$ .

The wavelength of the four Balmer series lines for hydrogen are found to be 410.3, 434.2, 486.3, and 656.5 nm. What average percentage difference is found between these wavelength numbers and those predicted by $\frac{1}{\lambda }=R\left(\frac{1}{{n}_{\text{f}}^{2}}-\frac{1}{{n}_{\text{i}}^{2}}\right)$ ? It is amazing how well a simple formula (disconnected originally from theory) could duplicate this phenomenon.

where we get a research paper on Nano chemistry....?
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
Ali
what are the products of Nano chemistry?
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
revolt
da
Application of nanotechnology in medicine
what is variations in raman spectra for nanomaterials
I only see partial conversation and what's the question here!
what about nanotechnology for water purification
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
why we need to study biomolecules, molecular biology in nanotechnology?
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
why?
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers! By Brooke Delaney By Madison Christian By OpenStax By Jessica Collett By OpenStax By Maureen Miller By Rylee Minllic By OpenStax By John Gabrieli By Eddie Unverzagt