<< Chapter < Page Chapter >> Page >

The next step of carbohydrate digestion takes place in the duodenum. The chyme from the stomach enters the duodenum and mixes with the digestive secretions from the pancreas, liver, and gallbladder. Pancreatic juices also contain an amylase enzyme, which continues the breakdown of starch and glycogen into maltose, a disaccharide. The disaccharides are broken down into monosaccharides by enzymes called maltases, sucrases, and lactases, which are also present in cells lining the small intestine. Maltase breaks down maltose into glucose. Other disaccharides, such as sucrose and lactose are broken down by sucrase and lactase, respectively. Sucrase breaks down sucrose (or “table sugar”) into glucose and fructose, and lactase breaks down lactose (or “milk sugar”) into glucose and galactose. The monosaccharides (e.g., glucose and fructose) thus produced are absorbed by the intestinal cells and transported into the bloodstream. The steps in carbohydrate digestion are summarized in [link] and [link] .

Pathways for the breakdown of starch and glycogen, sucrose, and lactose are shown. Starch and glycogen, which are both polysaccharides, are broken down into the disaccharide maltose. Maltose is then broken down into the monosaccharaide glucose. Sucrose, a disaccharide, is broken down by sucrose into the monosaccharides glucose and fructose. Lactose, also a disaccharide, is broken down by lactase into glucose and galactose.
Digestion of carbohydrates is performed by several enzymes. Starch and glycogen are broken down into glucose by amylase and maltase. Sucrose (table sugar) and lactose (milk sugar) are broken down by sucrase and lactase, respectively.
Digestion of Carbohydrates
Enzyme Produced By Site of Action Substrate Acting On End Products
Salivary amylase Salivary glands Mouth Polysaccharides (Starch) Disaccharides (maltose), oligosaccharides
Pancreatic amylase Pancreas Small intestine Polysaccharides (starch) Disaccharides (maltose), monosaccharides
Oligosaccharidases Lining of the intestine; brush border membrane Small intestine Disaccharides Monosaccharides (e.g., glucose, fructose, galactose)

Protein

A large part of protein digestion takes place in the stomach. The enzyme pepsin plays an important role in the digestion of proteins by breaking down the intact protein to peptides, which are short chains of four to nine amino acids. In the duodenum, other enzymes—trypsin, elastase, and chymotrypsin—act on the peptides reducing them to smaller peptides. Trypsin elastase, carboxypeptidase, and chymotrypsin are produced by the pancreas and released into the duodenum where they act on the chyme. Further breakdown of peptides to single amino acids is aided by enzymes called peptidases (those that break down peptides). Specifically, carboxypeptidase, dipeptidase, and aminopeptidase play important roles in reducing the peptides to free amino acids. The amino acids are absorbed into the bloodstream through the small intestines. The steps in protein digestion are summarized in [link] and [link] .

Protein digestion begins in the stomach, where pepsin breaks proteins down into fragments, called peptides. Further digestion occurs in the small intestine, where a variety of enzymes break peptides down into smaller peptides, and then into individual amino acids. Several of the protein-digesting enzymes found in the small intestine are secreted from the pancreas. Amino acids are absorbed from the small intestine into the blood stream. The liver regulates the distribution of amino acids to the rest of the body. A small amount of dietary protein is lost in the feces.
Protein digestion is a multistep process that begins in the stomach and continues through the intestines.
Digestion of Protein
Enzyme Produced By Site of Action Substrate Acting On End Products
Pepsin Stomach chief cells Stomach Proteins Peptides
  • Trypsin
  • Elastase Chymotrypsin
Pancreas Small intestine Proteins Peptides
Carboxypeptidase Pancreas Small intestine Peptides Amino acids and peptides
  • Aminopeptidase
  • Dipeptidase
Lining of intestine Small intestine Peptides Amino acids

Lipids

The bulk of lipid digestion occurs in the small intestine, via the action of pancreatic lipase. When chyme enters the duodenum, it triggers a hormonal response resulting in the release of bile, which is produced in the liver and stored in the gallbladder. Bile aids in the digestion of lipids, primarily triglycerides, by emulsification. Emulsification is a physical process in which large lipid globules are dispersed into several small lipid globules. Lipids are hydrophobic substances: in the presence of water, they will aggregate to form large globules to minimize exposure to water. These small globules have a larger surface-to-volume ratio and thus an increased surface area for the lipases to interact with. Bile contains bile salts, which are amphipathic, meaning they contain hydrophobic and hydrophilic parts. Thus, the bile salts hydrophilic side can interface with water on one side and the hydrophobic side interfaces with lipids on the other. By doing so, bile salts emulsify large lipid globules into small lipid globules.

By forming an emulsion, bile salts increase the available surface area of the lipid particles significantly. The pancreatic lipases can then act on the lipids more efficiently and digest them, as detailed in [link] . Lipases break down the dietary triglycerides into fatty acids and monoglycerides (one fatty acid attached to a glycerol molecule). These molecules can pass through the plasma membrane of the cell and enter the epithelial cells of the intestinal lining. Lipase products (fatty acids and monoglycerides) pass through the intestinal cells where they are reassembled into triglycerides, and then are combined with proteins to form large fatty complexes called chylomicrons. Chylomicrons contain triglycerides, cholesterol, and other lipids and have proteins on their surface. The surface is also composed of the hydrophilic phosphate "heads" of phospholipids. Together, they enable the chylomicron to move in an aqueous environment without exposing the lipids to water. Chylomicrons leave the absorptive cells via exocytosis. Chylomicrons enter the lymphatic vessels, and then enter the blood via the thoracic duct on their way to the liver.

Illustration shows a row of absorptive epithelial cells that line the intestinal lumen. Hair-like microvilli project into the lumen. On the other side of the epithelial cells are capillaries and lymphatic vessels. In the intestinal lumen, lipids are emulsified by the bile. Lipases break down fats, also known as triglycerides, into fatty acids and monoglycerides. Fats are made up of three fatty acids attached to a 3-carbon glycerol backbone. In monoglycerides, two of the fatty acids are removed. The emulsified lipids form small, spherical particles called micelles that are absorbed by the epithelial cells. Inside the epithelial cells the fatty acids and monoglyerides are reassembled into triglycerides. The triglycerides aggregate with cholesterol, proteins, and phospholipids to form spherical chylomicrons. The chylomicrons are moved into a lymph capillary, which transports them to the rest of the body.
Lipids are digested and absorbed in the small intestine.

Summary of digestion

Steps in mechanical and chemical digestion are shown. Digestion begins in the mouth, where chewing and swallowing mechanically breaks down food into smaller particles, and enzymes chemically digest carbohydrates. In the stomach, mechanical digestion includes peristaltic mixing and propulsion. Chemical digestion of proteins occurs, and lipid-soluble substances such as aspirin are absorbed. In the small intestine, mechanical digestion occurs through mixing and propulsion, primarily by segmentation. Chemical digestion of carbohydrates, lipids, proteins and nucleic acid occurs. Peptides, amino acids, glucose, fructose, lipids, water, vitamins, and minerals are absorbed into the bloodstream. In the large intestine, mechanical digestion occurs through segmental mixing and mass movement. No chemical digestion occurs except for digestion by bacteria. Water, ions, vitamins, minerals, and small organic molecules produced by bacteria are absorbed into the bloodstream.
Mechanical and chemical digestion of food takes place in many steps, beginning in the mouth and ending in the rectum.

Elimination

The final step in digestion is the elimination of undigested food content and waste products. The undigested food material enters the colon, where most of the water is reabsorbed. Recall that the colonis also home to the microflora called “intestinal flora” that aid in the digestion process. The semi-solid waste is moved through the colon by peristaltic movements of the muscle and is stored in the rectum. Asthe rectum expands in response to storage of fecal matter, it triggers the neural signals required to set up the urge to eliminate. The solid waste is eliminated through the anus using peristaltic movements of therectum.

Questions & Answers

where we get a research paper on Nano chemistry....?
Maira Reply
what are the products of Nano chemistry?
Maira Reply
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
Google
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
Preparation and Applications of Nanomaterial for Drug Delivery
Hafiz Reply
revolt
da
Application of nanotechnology in medicine
what is variations in raman spectra for nanomaterials
Jyoti Reply
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
LITNING Reply
what is a peer
LITNING Reply
What is meant by 'nano scale'?
LITNING Reply
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Principles of biology. OpenStax CNX. Aug 09, 2016 Download for free at http://legacy.cnx.org/content/col11569/1.25
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Principles of biology' conversation and receive update notifications?

Ask