<< Chapter < Page Chapter >> Page >

A photograph of the surface of planet Venus is shown. The lava flows on Venus are shown as orange red color of the surface.
An image of Sif Mons with lava flows on Venus, based on Magellan synthetic aperture radar data combined with radar altimetry to produce a three-dimensional map of the surface. The Venusian atmosphere is opaque to visible light, but not to the microwaves that were used to create this image. (credit: NSSDC, NASA/JPL)

Heating with microwaves

How does the ubiquitous microwave oven produce microwaves electronically, and why does food absorb them preferentially? Microwaves at a frequency of 2.45 GHz are produced by accelerating electrons. The microwaves are then used to induce an alternating electric field in the oven.

Water and some other constituents of food have a slightly negative charge at one end and a slightly positive charge at one end (called polar molecules). The range of microwave frequencies is specially selected so that the polar molecules, in trying to keep orienting themselves with the electric field, absorb these energies and increase their temperatures—called dielectric heating.

The energy thereby absorbed results in thermal agitation heating food and not the plate, which does not contain water. Hot spots in the food are related to constructive and destructive interference patterns. Rotating antennas and food turntables help spread out the hot spots.

Another use of microwaves for heating is within the human body. Microwaves will penetrate more than shorter wavelengths into tissue and so can accomplish “deep heating” (called microwave diathermy). This is used for treating muscular pains, spasms, tendonitis, and rheumatoid arthritis.

Making connections: take-home experiment—microwave ovens

  1. Look at the door of a microwave oven. Describe the structure of the door. Why is there a metal grid on the door? How does the size of the holes in the grid compare with the wavelengths of microwaves used in microwave ovens? What is this wavelength?
  2. Place a glass of water (about 250 ml) in the microwave and heat it for 30 seconds. Measure the temperature gain (the Δ T size 12{DT} {} ). Assuming that the power output of the oven is 1000 W, calculate the efficiency of the heat-transfer process.
  3. Remove the rotating turntable or moving plate and place a cup of water in several places along a line parallel with the opening. Heat for 30 seconds and measure the Δ T size 12{DT} {} for each position. Do you see cases of destructive interference?

Microwaves generated by atoms and molecules far away in time and space can be received and detected by electronic circuits. Deep space acts like a blackbody with a 2.7 K temperature, radiating most of its energy in the microwave frequency range. In 1964, Penzias and Wilson detected this radiation and eventually recognized that it was the radiation of the Big Bang’s cooled remnants.

Infrared radiation

The microwave and infrared regions of the electromagnetic spectrum overlap (see [link] ). Infrared radiation is generally produced by thermal motion and the vibration and rotation of atoms and molecules. Electronic transitions in atoms and molecules can also produce infrared radiation.

Questions & Answers

What is the frictional forc e between two bodies
Kennedy Reply
it is the force which always opposes the motion of the body
what is a wave
Williams Reply
wave means. A field of study
what are Atoms
is the movement back and front or up and down
how ?
wave is a disturbance that transfers energy through matter or space with little or no associated mass.
A wave is a motion of particles in disturbed medium that carry energy from one midium to another
an atom is the smallest unit( particle) of an element that bares it's chemical properties
what is electromagnetic induction?
what's boy's law
How is the de Broglie wavelength of electrons related to the quantization of their orbits in atoms and molecules?
Larissa Reply
How do you convert 0.0045kgcm³ to the si unit?
how many state of matter do we really have like I mean... is there any newly discovered state of matter?
Falana Reply
I only know 5: •Solids •Liquids •Gases •Plasma •Bose-Einstein condensate
Alright Thank you
Which one is the Bose-Einstein
can you explain what plasma and the I her one you mentioned
u can say sun or stars are just the state of plasma
but the are more than seven
list it out I wanna know
what the meaning of continuum
Akhigbe Reply
What state of matter is fire
Thapelo Reply
fire is not in any state of matter...fire is rather a form of energy produced from an oxidising reaction.
Isn`t fire the plasma state of matter?
all this while I taught it was plasma
How can you define time?
Thapelo Reply
Time can be defined as a continuous , dynamic , irreversible , unpredictable quantity .
unpredictable? but I can say after one o'clock its going to be two o'clock predictably!
how can we define vector
I would define it as having a magnitude (size)with a direction. An example I can think of is a car traveling at 50m/s (magnitude) going North (direction)
as for me guys u would say time is quantity that measures how long it takes for a specific condition to happen e.g how long it takes for the day to end or how it takes for the travelling car to cover a km.
what is the relativity of physics
Paul Reply
How do you convert 0.0045kgcm³ to the si unit?
What is the formula for motion
Anthony Reply
V=u+at V²=u²-2as
they are eqns of linear motion
v=u+at s=ut+at^\2 v^=u^+2as where ^=2
Explain dopplers effect
Jennifer Reply
Not yet learnt
Explain motion with types
Acceleration is the change in velocity over time. Given this information, is acceleration a vector or a scalar quantity? Explain.
Alabi Reply
Scalar quantity Because acceleration has only magnitude
acleration is vectr quatity it is found in a spefied direction and it is product of displcemnt
its a scalar quantity
velocity is speed and direction. since velocity is a part of acceleration that makes acceleration a vector quantity. an example of this is centripetal acceleration. when you're moving in a circular patter at a constant speed, you are still accelerating because your direction is constantly changing.
acceleration is a vector quantity. As explained by Josh Thompson, even in circular motion, bodies undergoing circular motion only accelerate because on the constantly changing direction of their constant speed. also retardation and acceleration are differentiated by virtue of their direction in
respect to prevailing force
What is the difference between impulse and momentum?
Momentum is the product of the mass of a body and the change in velocity of its motion. ie P=m(v-u)/t (SI unit is kgm/s). it is literally the impact of collision from a moving body. While Impulse is the product of momentum and time. I = Pt (SI unit is kgm) or it is literally the change in momentum
Or I = m(v-u)
the tendency of a body to maintain it's inertia motion is called momentum( I believe you know what inertia means) so for a body to be in momentum it will be really hard to stop such body or object..... this is where impulse comes in.. the force applied to stop the momentum of such body is impulse..
Calculation of kinetic and potential energy
dion Reply
K.e=mv² P.e=mgh
K is actually 1/2 mv^2
what impulse is given to an a-particle of mass 6.7*10^-27 kg if it is ejected from a stationary nucleus at a speed of 3.2*10^-6ms²? what average force is needed if it is ejected in approximately 10^-8 s?
speed=velocity÷time velocity=speed×time=3.2×10^-6×10^-8=32×10^-14m/s impulse [I]=∆momentum[P]=mass×velocity=6.7×10^-27×32×10^-14=214.4×10^-41kg/ms force=impulse÷time=214.4×10^-41÷10^-8=214.4×10^-33N. dats how I solved it.if wrong pls correct me.
what is sound wave
Nworu Reply
sound wave is a mechanical longitudinal wave that transfers energy from one point to another
its a longitudnal wave which is associted wth compresion nad rearfractions
what is power
it's also a capability to do something or act in a particular way.
Newton laws of motion
power also known as the rate of ability to do work
power means capabilty to do work p=w/t its unit is watt or j/s it also represents how much work is done fr evry second

Get the best College physics course in your pocket!

Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?