<< Chapter < Page Chapter >> Page >
Q 1 = Q 2 A 1 v ¯ 1 = A 2 v ¯ 2 } . size 12{ left none matrix { Q rSub { size 8{1} } =Q rSub { size 8{2} } {} ##A rSub { size 8{1} } {overline {v rSub { size 8{1} } }} =A rSub { size 8{2} } {overline {v rSub { size 8{2} } }} } right rbrace "." } {}

This is called the equation of continuity and is valid for any incompressible fluid. The consequences of the equation of continuity can be observed when water flows from a hose into a narrow spray nozzle: it emerges with a large speed—that is the purpose of the nozzle. Conversely, when a river empties into one end of a reservoir, the water slows considerably, perhaps picking up speed again when it leaves the other end of the reservoir. In other words, speed increases when cross-sectional area decreases, and speed decreases when cross-sectional area increases.

The figure shows a cylindrical tube broad at the left and narrow at the right. The fluid is shown to flow through the cylindrical tube toward right along the axis of the tube. A shaded area is marked on the broader cylinder on the left. A cross section is marked on it as A one. A point one is marked on this cross section. The velocity of the fluid through the shaded area on narrow tube is marked by v one as an arrow toward right. Another shaded area is marked on the narrow cylindrical on the right. The shaded area on narrow tube is longer than the one on broader tube to show that when a tube narrows, the same volume occupies a greater length. A cross section is marked on the narrow cylindrical tube as A two. A point two is marked on this cross section. The velocity of fluid through the shaded area on narrow tube is marked v two toward right. The arrow depicting v two is longer than for v one showing v two to be greater in value than v one.
When a tube narrows, the same volume occupies a greater length. For the same volume to pass points 1 and 2 in a given time, the speed must be greater at point 2. The process is exactly reversible. If the fluid flows in the opposite direction, its speed will decrease when the tube widens. (Note that the relative volumes of the two cylinders and the corresponding velocity vector arrows are not drawn to scale.)

Since liquids are essentially incompressible, the equation of continuity is valid for all liquids. However, gases are compressible, and so the equation must be applied with caution to gases if they are subjected to compression or expansion.

Calculating fluid speed: speed increases when a tube narrows

A nozzle with a radius of 0.250 cm is attached to a garden hose with a radius of 0.900 cm. The flow rate through hose and nozzle is 0.500 L/s. Calculate the speed of the water (a) in the hose and (b) in the nozzle.

Strategy

We can use the relationship between flow rate and speed to find both velocities. We will use the subscript 1 for the hose and 2 for the nozzle.

Solution for (a)

First, we solve Q = A v ¯ size 12{Q=A {overline {v}} } {} for v 1 size 12{v rSub { size 8{1} } } {} and note that the cross-sectional area is A = πr 2 size 12{A=πr rSup { size 8{2} } } {} , yielding

v ¯ 1 = Q A 1 = Q πr 1 2 . size 12{ {overline {v rSub { size 8{1} } }} = { {Q} over {A rSub { size 8{1} } } } = { {Q} over {πr rSub { size 8{1} rSup { size 8{2} } } } } } {}

Substituting known values and making appropriate unit conversions yields

v ¯ 1 = ( 0 . 500 L/s ) ( 10 3 m 3 / L ) π ( 9 . 00 × 10 3 m ) 2 = 1 . 96 m/s . size 12{ {overline {v rSub { size 8{1} } }} = { { \( 0 "." "500"" L/s" \) \( "10" rSup { size 8{ - 3} } " m" rSup { size 8{3} } /L \) } over {π \( 9 "." "00" times "10" rSup { size 8{ - 3} } " m" \) rSup { size 8{2} } } } =1 "." "96"" m/s"} {}

Solution for (b)

We could repeat this calculation to find the speed in the nozzle v ¯ 2 size 12{ {overline {v rSub { size 8{2} } }} } {} , but we will use the equation of continuity to give a somewhat different insight. Using the equation which states

A 1 v ¯ 1 = A 2 v ¯ 2 , size 12{A rSub { size 8{1} } {overline {v rSub { size 8{1} } }} =A rSub { size 8{2} } {overline {v rSub { size 8{2} } }} } {}

solving for v ¯ 2 size 12{ {overline {v rSub { size 8{2} } }} } {} and substituting πr 2 size 12{πr rSup { size 8{2} } } {} for the cross-sectional area yields

v ¯ 2 = A 1 A 2 v ¯ 1 = πr 1 2 πr 2 2 v ¯ 1 = r 1 2 r 2 2 v ¯ 1 . size 12{ {overline {v rSub { size 8{2} } }} = { {A rSub { size 8{1} } } over {A rSub { size 8{2} } } } {overline {v rSub { size 8{1} } }} = { {πr rSub { size 8{1} rSup { size 8{2} } } } over {πr rSub { size 8{2} rSup { size 8{2} } } } } {overline {v rSub { size 8{1} } }} = { {r rSub { size 8{1} rSup { size 8{2} } } } over {r rSub { size 8{2} rSup { size 8{2} } } } } {overline {v rSub { size 8{1} } }} } {}

Substituting known values,

v ¯ 2 = ( 0 . 900 cm ) 2 ( 0 . 250 cm ) 2 1 . 96 m/s = 25 . 5 m/s . size 12{ {overline {v rSub { size 8{2} } }} = { { \( 0 "." "900"" cm" \) rSup { size 8{2} } } over { \( 0 "." "250"" cm" \) rSup { size 8{2} } } } 1 "." "96"" m/s"="25" "." "5 m/s"} {}

Discussion

A speed of 1.96 m/s is about right for water emerging from a nozzleless hose. The nozzle produces a considerably faster stream merely by constricting the flow to a narrower tube.

The solution to the last part of the example shows that speed is inversely proportional to the square of the radius of the tube, making for large effects when radius varies. We can blow out a candle at quite a distance, for example, by pursing our lips, whereas blowing on a candle with our mouth wide open is quite ineffective.

In many situations, including in the cardiovascular system, branching of the flow occurs. The blood is pumped from the heart into arteries that subdivide into smaller arteries (arterioles) which branch into very fine vessels called capillaries. In this situation, continuity of flow is maintained but it is the sum of the flow rates in each of the branches in any portion along the tube that is maintained. The equation of continuity in a more general form becomes

Questions & Answers

Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Physics 105: adventures in physics. OpenStax CNX. Dec 02, 2015 Download for free at http://legacy.cnx.org/content/col11916/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics 105: adventures in physics' conversation and receive update notifications?

Ask