# 2.5 Rules of exponents

 Page 1 / 2
This module is from Elementary Algebra by Denny Burzynski and Wade Ellis, Jr. The symbols, notations, and properties of numbers that form the basis of algebra, as well as exponents and the rules of exponents, are introduced in this chapter. Each property of real numbers and the rules of exponents are expressed both symbolically and literally. Literal explanations are included because symbolic explanations alone may be difficult for a student to interpret.Objectives of this module: understand the product and quotient rules for exponents, understand the meaning of zero as an exponent.

## Overview

• The Product Rule for Exponents
• The Quotient Rule for Exponents
• Zero as an Exponent

We will begin our study of the rules of exponents by recalling the definition of exponents.

## Definition of exponents

If $x$ is any real number and $n$ is a natural number, then

${x}^{n}=\underset{n\text{\hspace{0.17em}}\text{factors}\text{\hspace{0.17em}}\text{of}\text{\hspace{0.17em}}x\text{\hspace{0.17em}}}{\underbrace{x\cdot x\cdot x\cdot ...\cdot x}}$

An exponent records the number of identical factors in a multiplication.

## Base exponent power

In ${x}^{n}$ ,

$x$ is the base
$n$ is the exponent
The number represented by ${x}^{n}$ is called a power .

The term ${x}^{n}$ is read as " $x$ to the $n$ th."

## The product rule for exponents

The first rule we wish to develop is the rule for multiplying two exponential quantities having the same base and natural number exponents. The following examples suggest this rule:

$\begin{array}{l}\begin{array}{ccccccccccc}{x}^{2}& \cdot & {x}^{4}& =& \underset{}{\underbrace{xx}}& \cdot & \underset{}{\underbrace{xxxx}}& =& \underset{}{\underbrace{xxxxxx}}& =& {x}^{6}\\ & & & & \text{\hspace{0.17em}}2& +& 4& =& 6& & \end{array}\\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{factors}\begin{array}{ccccc}& & & \text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{factors}& \end{array}\end{array}$

$\begin{array}{l}\begin{array}{ccccccccccc}a& \cdot & {a}^{2}& =& \underset{}{\underbrace{a}}& \cdot & \underset{}{\underbrace{aa}}& =& \underset{}{\underbrace{aaa}}& =& {a}^{3}\\ & & & & 1& +& 2& =& 3& & \end{array}\\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\begin{array}{cccc}\text{factors}& & \text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{factors}& \end{array}\end{array}$

## Product rule for exponents

If $x$ is a real number and $n$ and $m$ are natural numbers,

${x}^{n}{x}^{m}={x}^{n+m}$

To multiply two exponential quantities having the same base, add the exponents. Keep in mind that the exponential quantities being multiplied must have the same base for this rule to apply.

## Sample set a

Find the following products. All exponents are natural numbers.

${x}^{3}\cdot {x}^{5}={x}^{3+5}={x}^{8}$

${a}^{6}\cdot {a}^{14}={a}^{6+14}={a}^{20}$

${y}^{5}\cdot y={y}^{5}\cdot {y}^{1}={y}^{5+1}={y}^{6}$

${\left(x-2y\right)}^{8}{\left(x-2y\right)}^{5}={\left(x-2y\right)}^{8+5}={\left(x-2y\right)}^{13}$

$\begin{array}{ll}{x}^{3}{y}^{4}\ne {\left(xy\right)}^{3+4}\hfill & \text{Since}\text{\hspace{0.17em}}\text{the}\text{\hspace{0.17em}}\text{bases}\text{\hspace{0.17em}}\text{are}\text{\hspace{0.17em}}\text{not}\text{\hspace{0.17em}}\text{the}\text{\hspace{0.17em}}\text{same,}\text{\hspace{0.17em}}\text{the}\text{\hspace{0.17em}}\hfill \\ \hfill & \text{product}\text{\hspace{0.17em}}\text{rule}\text{\hspace{0.17em}}\text{does}\text{\hspace{0.17em}}\text{not}\text{\hspace{0.17em}}\text{apply}\text{.}\hfill \end{array}$

## Practice set a

Find each product.

${x}^{2}\cdot {x}^{5}$

${x}^{2+5}={x}^{7}$

${x}^{9}\cdot {x}^{4}$

${x}^{9+4}={x}^{13}$

${y}^{6}\cdot {y}^{4}$

${y}^{6+4}={y}^{10}$

${c}^{12}\cdot {c}^{8}$

${c}^{12+8}={c}^{20}$

${\left(x+2\right)}^{3}\cdot {\left(x+2\right)}^{5}$

${\left(x+2\right)}^{3+5}={\left(x+2\right)}^{8}$

## Sample set b

We can use the first rule of exponents (and the others that we will develop) along with the properties of real numbers.

$2{x}^{3}\cdot 7{x}^{5}=\begin{array}{||}\hline 2\cdot 7\cdot {x}^{3+5}\\ \hline\end{array}=14{x}^{8}$

We used the commutative and associative properties of multiplication. In practice, we use these properties “mentally” (as signified by the drawing of the box). We don’t actually write the second step.

$4{y}^{3}\cdot 6{y}^{2}=\begin{array}{||}\hline 4\cdot 6\cdot {y}^{3+2}\\ \hline\end{array}=24{y}^{5}$

$9{a}^{2}{b}^{6}\left(8a{b}^{4}2{b}^{3}\right)=\begin{array}{||}\hline 9\cdot 8\cdot 2{a}^{2+1}{b}^{6+4+3}\\ \hline\end{array}=144{a}^{3}{b}^{13}$

$5{\left(a+6\right)}^{2}\cdot 3{\left(a+6\right)}^{8}=\begin{array}{||}\hline 5\cdot 3{\left(a+6\right)}^{2+8}\\ \hline\end{array}=15{\left(a+6\right)}^{10}$

$4{x}^{3}\cdot 12\cdot {y}^{2}=48{x}^{3}{y}^{2}$ The bases are the same, so we add the exponents. Although we don’t know exactly what number is, the notation indicates the addition.

## Practice set b

Perform each multiplication in one step.

$3{x}^{5}\cdot 2{x}^{2}$

$6{x}^{7}$

$6{y}^{3}\cdot 3{y}^{4}$

$18{y}^{7}$

$4{a}^{3}{b}^{2}\cdot 9{a}^{2}b$

$36{a}^{5}{b}^{3}$

${x}^{4}\cdot 4{y}^{2}\cdot 2{x}^{2}\cdot 7{y}^{6}$

$56{x}^{6}{y}^{8}$

${\left(x-y\right)}^{3}\cdot 4{\left(x-y\right)}^{2}$

$4{\left(x-y\right)}^{5}$

$8{x}^{4}{y}^{2}x{x}^{3}{y}^{5}$

$8{x}^{8}{y}^{7}$

$2aa{a}^{3}\left(a{b}^{2}{a}^{3}\right)b6a{b}^{2}$

$12{a}^{10}{b}^{5}$

${a}^{n}\cdot {a}^{m}\cdot {a}^{r}$

${a}^{n+m+r}$

## The quotient rule for exponents

The second rule we wish to develop is the rule for dividing two exponential quantities having the same base and natural number exponents.
The following examples suggest a rule for dividing two exponential quantities having the same base and natural number exponents.

How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
why we need to study biomolecules, molecular biology in nanotechnology?
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
why?
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
what does nano mean?
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
Abigail
for teaching engĺish at school how nano technology help us
Anassong
How can I make nanorobot?
Lily
Do somebody tell me a best nano engineering book for beginners?
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
how can I make nanorobot?
Lily
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
Difference between extinct and extici spicies
While the American heart association suggests that meditation might be used in conjunction with more traditional treatments as a way to manage hypertension
in a comparison of the stages of meiosis to the stage of mitosis, which stages are unique to meiosis and which stages have the same event in botg meiosis and mitosis
Please keep in mind that it's not allowed to promote any social groups (whatsapp, facebook, etc...), exchange phone numbers, email addresses or ask for personal information on QuizOver's platform. By     By Anonymous User  By  By By