# 2.5 Motion equations for constant acceleration in one dimension  (Page 4/8)

 Page 4 / 8

What else can we learn by examining the equation $x={x}_{0}+{v}_{0}t+\frac{1}{2}{\text{at}}^{2}?$ We see that:

• displacement depends on the square of the elapsed time when acceleration is not zero. In [link] , the dragster covers only one fourth of the total distance in the first half of the elapsed time
• if acceleration is zero, then the initial velocity equals average velocity ( ${v}_{0}=\stackrel{-}{v}$ ) and $x={x}_{0}+{v}_{0}t+\frac{1}{2}{\text{at}}^{2}$ becomes $x={x}_{0}+{v}_{0}t$

## Solving for final velocity when velocity is not constant ( $a\ne 0$ )

A fourth useful equation can be obtained from another algebraic manipulation of previous equations.

If we solve $v={v}_{0}+\text{at}$ for $t$ , we get

$t=\frac{v-{v}_{0}}{a}\text{.}$

Substituting this and $\stackrel{-}{v}=\frac{{v}_{0}+v}{2}$ into $x={x}_{0}+\stackrel{-}{v}t$ , we get

${v}^{2}={v}_{0}^{2}+2a\left(x-{x}_{0}\right)\text{}\phantom{\rule{0.25em}{0ex}}\left(\text{constant}\phantom{\rule{.25 em}{0ex}}a\right)\text{.}$

## Calculating final velocity: dragsters

Calculate the final velocity of the dragster in [link] without using information about time.

Strategy

Draw a sketch.

The equation ${v}^{2}={v}_{0}^{2}+2a\left(x-{x}_{0}\right)$ is ideally suited to this task because it relates velocities, acceleration, and displacement, and no time information is required.

Solution

1. Identify the known values. We know that ${v}_{0}=0$ , since the dragster starts from rest. Then we note that $x-{x}_{0}=\text{402 m}$ (this was the answer in [link] ). Finally, the average acceleration was given to be $a=\text{26}\text{.}{\text{0 m/s}}^{2}$ .

2. Plug the knowns into the equation ${v}^{2}={v}_{0}^{2}+2a\left(x-{x}_{0}\right)$ and solve for $v.$

${v}^{2}=0+2\left(\text{26}\text{.}{\text{0 m/s}}^{2}\right)\left(\text{402 m}\right).$

Thus

${v}^{2}=2\text{.}\text{09}×{\text{10}}^{4}\phantom{\rule{0.25em}{0ex}}{\text{m}}^{2}{\text{/s}}^{2}.$

To get $v$ , we take the square root:

$v=\sqrt{2\text{.}\text{09}×{\text{10}}^{4}\phantom{\rule{0.25em}{0ex}}{\text{m}}^{2}{\text{/s}}^{2}}=\text{145 m/s}.$

Discussion

145 m/s is about 522 km/h or about 324 mi/h, but even this breakneck speed is short of the record for the quarter mile. Also, note that a square root has two values; we took the positive value to indicate a velocity in the same direction as the acceleration.

An examination of the equation ${v}^{2}={v}_{0}^{2}+2a\left(x-{x}_{0}\right)$ can produce further insights into the general relationships among physical quantities:

• The final velocity depends on how large the acceleration is and the distance over which it acts
• For a fixed deceleration, a car that is going twice as fast doesn’t simply stop in twice the distance—it takes much further to stop. (This is why we have reduced speed zones near schools.)

## Putting equations together

In the following examples, we further explore one-dimensional motion, but in situations requiring slightly more algebraic manipulation. The examples also give insight into problem-solving techniques. The box below provides easy reference to the equations needed.

## Summary of kinematic equations (constant $a$ )

$x={x}_{0}+\stackrel{-}{v}t$
$\stackrel{-}{v}=\frac{{v}_{0}+v}{2}$
$v={v}_{0}+\text{at}$
$x={x}_{0}+{v}_{0}t+\frac{1}{2}{\text{at}}^{2}$
${v}^{2}={v}_{0}^{2}+2a\left(x-{x}_{0}\right)$

## Calculating displacement: how far does a car go when coming to a halt?

On dry concrete, a car can decelerate at a rate of $7\text{.}{\text{00 m/s}}^{2}$ , whereas on wet concrete it can decelerate at only $5\text{.}{\text{00 m/s}}^{2}$ . Find the distances necessary to stop a car moving at 30.0 m/s (about 110 km/h) (a) on dry concrete and (b) on wet concrete. (c) Repeat both calculations, finding the displacement from the point where the driver sees a traffic light turn red, taking into account his reaction time of 0.500 s to get his foot on the brake.

Strategy

Draw a sketch.

In order to determine which equations are best to use, we need to list all of the known values and identify exactly what we need to solve for. We shall do this explicitly in the next several examples, using tables to set them off.

can a wheat stone bridge balance
what is Norton's theorm
jharana
an atom is symply a smallest unsplittable particle that makes up a compound
what is atom
nano parricles are arranging periodic
Bala
Water is flowing in a pipe with a varying cross-sectional area, and at all points the water completely fills the pipe. At point 1 the cross-sectional area of the pipe is 0.077 m2, and the magnitude of the fluid velocity is 3.50 m/s. (a) What is the fluid speed at points in the pipe where the cross
A particle behave like a wave and we do not why?
WAQAR
what's the period of velocity 4cm/s at displacement 10cm
What is physics
the branch of science concerned with the nature and properties of matter and energy. The subject matter of physics includes mechanics, heat, light and other radiation, sound, electricity, magnetism, and the structure of atoms.
Aluko
and the word of matter is anything that have mass and occupied space
Aluko
what is phyices
Whats the formula
1/v+1/u=1/f
Aluko
what aspect of black body spectrum forced plank to purpose quantization of energy level in its atoms and molicules
a man has created by who?
What type of experimental evidence indicates that light is a wave
double slit experiment
Eric
The S. L. Unit of sound energy is
Hertz
jharana
what's the conversation like?
some sort of blatherring or mambo jambo you may say
I still don't understand what this group is all about oo
ENOBONG
no
uchenna
ufff....this associated with physics ..so u can ask questions related to all topics of physics..
what is sound?
Bella
what is upthrust
what is upthrust
Olisa
Up thrust is a force
Samuel
upthrust is a upward force that acts vertical in the ground surface.
Rodney
Paul
what is centre of gravity?
Paul
you think the human body could produce such Force
Anthony
what is wave
mirobiology
Angel