<< Chapter < Page Chapter >> Page >
A basic introduction to the element of music called counterpoint, with some useful terms.
Are you really free to use this online resource? Join the discussion at Opening Measures .

Introduction

Counterpoint is an important element of music, but it is not one of the basic elements. Many pieces of music have rhythm , melody , harmony , color , and texture , but no real counterpoint. In fact, when describing the texture of a piece of music, two of the most important questions that need to be addressed are: is there counterpoint, and how important is it?

When there is more than one independent melodic line happening at the same time in a piece of music, we say that the music is contrapuntal . The independent melodic lines are called counterpoint . The music that is made up of counterpoint can also be called polyphony , or one can say that the music is polyphonic or speak of the polyphonic texture of the music. Traditionally, vocal music is more likely to be described as polyphony and instrumental music is more likely to be described as counterpoint . But all of these terms refer to two or more independent, simultaneous melodies. "Simultaneous" means the melodies are happening at the same time. "Independent" means that at any given moment what is happening in one melody (both in the rhythms and in the pitches ) is probably not the same thing that is happening in the other melody.

First, some examples of music that is not counterpoint. Obviously, there is no counterpoint if there is no melody at all. If there is one melodic line accompanied only by rhythm, or drones, or only by chords, there is no counterpoint.

Even if different people are singing or playing different parts, it is not necessarily considered counterpoint if the parts are not independent enough, or if one of the parts is very clearly a dominating melody. Many traditional choral pieces are a good example of this. There are four very different singing parts (soprano, alto, tenor, and bass), and each part, sung alone, can seem like its own melody, a melody that does not sound at all like the melody of the piece. But the parts have basically the same rhythms, so that the effect, when sung together, is of chords being sung. "Barbershop"-style music is another good example of this homophonic , or chordal, kind of texture, which is not considered counterpoint.

Now for some familiar examples of counterpoint. One of the simplest and most familiar types of counterpoint is the round. In a round , everyone sings the same melody, but they start singing it at different times. Although everyone is singing exactly the same tune, at any particular time different people will be singing different parts of it, so the final effect is of independent parts. You may also have heard some Bach fugues or inventions; there are no better examples of counterpoint than these. Another example that may be familiar is the soloist in a pop or gospel song who, after the refrain has been repeated a few times, takes off on a countermelody or descant part while everyone else continues to sing the refrain. The melody instruments in a dixieland band are also generally playing independent parts, giving this genre its "busy" sound. In fact, when music sounds very "busy" or "complex" or when there is so much going on that it gets difficult to decide where the melody is or what part to sing along with, it is likely that you are hearing counterpoint.

Although there is plenty of music that has no counterpoint, independent parts are one of the most basic ways to make music sound rich and interesting. Even if a piece of music cannot really be called "counterpoint" or "polyphony", because it clearly has one melody, the accompaniment lines may still be quite contrapuntal. Even music that most people would describe as homophonic or chordal , because all the lines have exactly the same rhythm, is often written following the voice-leading rules of counterpoint. This gives the music a much richer, more interesting texture . Next time you are listening to your favorite song or your favorite piece of music, don't hum along with the melody. Instead, listen to the bass line. Listen to the harmonies , the inner voices and the instrumental accompaniment parts. Chances are that you will hear some interesting lines, even little pieces of melody, that are completely different from the part you normally hear.

Some useful terms

  • Canon - In a canon, different voices (or instruments) sing (or play) the same melody, with no changes, but at different times. The melody is usually sung at the same pitch or an octave higher or lower, but there are also canons in which the second part sings or plays the melody a perfect fourth or fifth higher or lower than the first part.
  • Round - In a canon, obviously every section of the canon must "fit" with the section that comes after it. (In other words, they must sound good when sung or played at the same time). A round is a special type of canon in which the last section also fits with the first section, so that the canon can be repeated over and over without stopping. Rounds are usually pretty short and always start at the same note, or the octave.
  • Fugue - A fugue usually has at least three independent parts, or voices . The different voices enter at different times on the same melodic theme (called the subject ), so that the beginning may sound like a canon. But then the different voices develop the theme in different directions. A second melodic theme (called the countersubject ) is usually introduced, and the middle of the fugue gets quite intricate, with the subject and countersubject popping in and out of various voices, sometimes in surprising ways (upside-down, for example).
  • Countermelody or descant - Sometimes a piece of music that is basically melody-with-accompaniment (homophonic) will include a single part that is truly independent of the melody. For example, a choral piece might be chordal for a few verses and then, to keep the music interesting and fresh, add an independent part for a flute or for the highest sopranos on the third verse. This is a countermelody, sometimes called a descant part. Gospel and pop singers often add countermelodies, sometimes imrovised, and classical music also contains many, many examples of countermelodies.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Understanding basic music theory. OpenStax CNX. Jan 10, 2007 Download for free at http://cnx.org/content/col10363/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Understanding basic music theory' conversation and receive update notifications?

Ask