<< Chapter < Page Chapter >> Page >
Descriptive Statistics: Measuring the Spread of Data explains standard deviation as a measure of variation in data and is part of the collection col10555 written by Barbara Illowsky and Susan Dean. Roberta Bloom made contributions that helped to clarify the standard deviation and the variance.

An important characteristic of any set of data is the variation in the data. In some data sets, the data values are concentrated closely near the mean; in other data sets, the data values are more widely spread out from the mean. The most common measure of variation, or spread, is the standard deviation.

The standard deviation is a number that measures how far data values are from their mean.

The standard deviation

  • provides a numerical measure of the overall amount of variation in a data set
  • can be used to determine whether a particular data value is close to or far from the mean

The standard deviation provides a measure of the overall variation in a data set

The standard deviation is always positive or 0. The standard deviation is small when the data are all concentrated close to the mean, exhibiting little variation or spread. The standard deviation is larger when the data values are more spread out from the mean, exhibiting more variation.

Suppose that we are studying waiting times at the checkout line for customers at supermarket A and supermarket B; the average wait time at both markets is 5 minutes. At market A, the standard deviation for the waiting time is 2 minutes; at market B the standard deviation for the waiting time is 4 minutes.

Because market B has a higher standard deviation, we know that there is more variation in the waiting times at market B. Overall, wait times at market B are more spread out from the average; wait times at market A are more concentrated near the average.

The standard deviation can be used to determine whether a data value is close to or far from the mean.

Suppose that Rosa and Binh both shop at Market A. Rosa waits for 7 minutes and Binh waits for 1 minute at the checkout counter. At market A, the mean wait time is 5 minutes and the standard deviation is 2 minutes. The standard deviation can be used to determine whether a data value is close to or far from the mean.

Rosa waits for 7 minutes:

  • 7 is 2 minutes longer than the average of 5; 2 minutes is equal to one standard deviation.
  • Rosa's wait time of 7 minutes is 2 minutes longer than the average of 5 minutes.
  • Rosa's wait time of 7 minutes is one standard deviation above the average of 5 minutes.

Binh waits for 1 minute.

  • 1 is 4 minutes less than the average of 5; 4 minutes is equal to two standard deviations.
  • Binh's wait time of 1 minute is 4 minutes less than the average of 5 minutes.
  • Binh's wait time of 1 minute is two standard deviations below the average of 5 minutes.
  • A data value that is two standard deviations from the average is just on the borderline for what many statisticians would consider to be far from the average. Considering data to be far from the mean if it is more than 2 standard deviations away is more of an approximate "rule of thumb" than a rigid rule. In general, the shape of the distribution of the data affects how much of the data is further away than 2 standard deviations. (We will learn more about this in later chapters.)

Questions & Answers

What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
what school?
biomolecules are e building blocks of every organics and inorganic materials.
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
sciencedirect big data base
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
characteristics of micro business
for teaching engĺish at school how nano technology help us
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
what is the actual application of fullerenes nowadays?
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
is Bucky paper clear?
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Do you know which machine is used to that process?
how to fabricate graphene ink ?
for screen printed electrodes ?
What is lattice structure?
s. Reply
of graphene you mean?
or in general
in general
Graphene has a hexagonal structure
On having this app for quite a bit time, Haven't realised there's a chat room in it.
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Berger describes sociologists as concerned with
Mueller Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Engr 2113 ece math. OpenStax CNX. Aug 27, 2010 Download for free at http://cnx.org/content/col11224/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Engr 2113 ece math' conversation and receive update notifications?