<< Chapter < Page
  Wiskunde graad 7   Page 1 / 1
Chapter >> Page >


Voorspellings, vergelykings en veranderlikes

Opvoeders afdeling


14. (a) 100

(b) 12

(c) 124

(d) 8

15. (a) 10 99 75 5


______ 8 ______ 21
39 ______ 74 ______

16.2 (a) 5 х + 7 = 22

(b) 8 х - 10 = 46

(c) 5 + 9 х = 59

(d) х - 13 = 6

16.3 (a) 21

(b) 17

(c) 34

18 (a) 72 (j) 30

(b) 12 (k) 5

(c) 7 (l) 57

(d) 141 000 (m) 9

  1. 900 (n) 9 987
  2. 47 (o) 125

(g) 135

(h) 336

(i) 7

20. (a) х >10

(b) y <2 000

(c) ( c +8)>6

(d) y <50

(e) k – ( k ÷ 2)<20

Leerders afdeling


Aktiwiteit: voorspellings, vergelykings en veranderlikes (algebraïese vergelyking) [lu 1.7.2, lu 1.9.1, lu 1.10, lu 2.5]

14. Vervang nou die letters deur die korrekte getalle in die volgende vloeidiagram:

15. Legkaarte!

a) Kan jy die volgende raaisels oplos?

Ek dink aan ’n sekere getal. As ek die getal met 7 vermenigvuldig, dan 6 aftrek en die antwoord wat ek kry deur 8 deel, is die kwosiënt 8. Aan watter getal dink ek?


Ek het 9. As ek dit met 12 vermenigvuldig, dan 2 bytel en weer 11 aftrek, is die antwoord _____________________________________________________________

Wat sal die antwoord wees as ek met 7 begin? _______________________________

En as ek met 5 begin? __________________________________________________

b) Ons kan ’n tabel opstel om ons met probleme soos dié hierbo te help.

Getalle 9 7 5
Getalle × 12 + 2 – 11 99 75 51

c) Ons kan die woord “getal” deur enige letter van die alfabet vervang. Kan jy die ontbrekende getalle in die volgende tabel inskryf?

k 6 ________ 13 _________
(k × 5) + 9 49 114

d) Verduidelik aan ’n maat hoe jy bogenoemde antwoorde gekry het.

16.1 Het jy geweet?

Ons noem die stelling (k × 5) + 9 = 49 ’n algebraïese vergelyking . “Algebra” beteken “die studie van getallesinne”.

16.2 Skryf nou ’n algebraiëse vergelyking vir die volgende:

a) ’n Sekere getal x 5 + 7 = 22


b) 8 x ’n getal – 10 = 46 ______________________________________

c) 5 + (9 x ’n getal ) = 59 _______________________________________

d) Wanneer 13 van ’n groter getal afgetrek word, is die verskil 6.


16.3 Los die volgende vergelykings op: (Jy mag jou sakrekenaar gebruik).

a) 49 x a – 29 = 1 000


b) (b + 15) x 6 = 192


c) 16 x c – 15 = 529


17. Het jy geweet?

Die letters wat in die plek van enige getal staan, word veranderlikes genoem.

18. Kom ons kyk nou eers hoe vaar jy in jou volgende hoofrekentoets.

a) 9 x 8 = ___________________________

b) ___________________________ x 4 = 48

c) 4 x ___________________________ = 28

d) 6 x 235 x 100 = ______________________

e) 25 x 9 x 4 = _________________________

f) 16 + 17 + 14 = ______________________

g) 104 + 15 + 16 = _____________________

h) Verdriedubbel: 112: = _____________________

i) 42 ÷ 6 = ___________________________

j) ___________________________ ÷ 6 = 5

k) 35 ÷ ___________________________ = 7

l) (7 x 3) + (4 x 9) =_______________________

m) 4 x 9 + ___________________________ = 45

n) 10 000 – 13 = ___________________________

o) 5 tot die krag van 3 = _______________________


19. Het jy geweet?

Wanneer ons>en<-tekens in getallesinne gebruik, bv. as ons wil sê ’n getal gedeel deur 4 is kleiner as 5, sal ons dit so skryf:

y ÷ 4<5

As ons bv. wil sê ’n getal vermenigvuldig met 5 is groter as 16, sal ons dit so skryf:

b x 5>16

Ons noem getallesinne soos hierdie wat nie = -tekens het nie, ongelykhede.

20. Skryf die volgende woordsinne as getallesinne deur gebruik te maak van ongelykhede:

a) Die getal lekkers wat ek het, is meer as 10.


b) Die getal leerders in ons skool is minder as 2 000.


c) ’n Getal, vermeerder met 8, is groter as 6.


d) Daar is minder as 50 leerders in ons klas.


e) As ek die helfte van my albasters weggee, sal ek minder as 20 hê.



Leeruitkomste 1: Die leerder is in staat om getalle en die verwantskappe daarvan te herken, te beskryf en voor te stel, en om tydens probleemoplossing bevoeg en met selfvertroue te tel, te skat, te bereken en te kontroleer.

Assesseringstandaard 1.7: Dit is duidelik wanneer die leerder skat en bereken deur geskikte bewerkings vir probleme wat die volgende behels, te kies en te gebruik:

1.7.2: veelvoudige bewerkings met heelgetalle;

1.7.7: eksponente;

Assesseringstandaard 1.10: Dit is duidelik wanneer die leerder ‘n verskeidenheid strategieë gebruik om oplossings te kontroleer en die redelikheid daarvan te beoordeel.

Leeruitkomste 2: Die leerder is in staat om patrone en verwantskappe te herken, te beskryf en voor te stel en probleme op te los deur algebraïese taal en vaardighede te gebruik.

Assesseringstandaard 2.1: Dit is duidelik wanneer die leerder ‘numeriese en meetkundige patrone ondersoek en uitbrei op soek na ‘n verwantskap of reëls, insluitend patrone;

Assesseringstandaard 2.3: Dit is duidelik wanneer die leerder ‘voorstellings maak van en verwantskappe tussen veranderlikes gebruik sodat inset- en/of uitsetwaardes op ‘n verskeidenheid maniere bepaal kan word deur die gebruik van:

2.3.2: vloeidiagramme;

2.3.3: tabelle;

Assesseringstandaard 2.5: Dit is duidelik wanneer die leerder getalsinne oplos of voltooi deur inspeksie of deur ‘n proses van probeer en verbeter, en die oplossings deur vervanging kontroleer (bv. 2 x - 8 = 4).

Questions & Answers

Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
what school?
biomolecules are e building blocks of every organics and inorganic materials.
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
sciencedirect big data base
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
characteristics of micro business
for teaching engĺish at school how nano technology help us
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
what is the actual application of fullerenes nowadays?
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
is Bucky paper clear?
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Do you know which machine is used to that process?
how to fabricate graphene ink ?
for screen printed electrodes ?
What is lattice structure?
s. Reply
of graphene you mean?
or in general
in general
Graphene has a hexagonal structure
On having this app for quite a bit time, Haven't realised there's a chat room in it.
what is biological synthesis of nanoparticles
Sanket Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Wiskunde graad 7. OpenStax CNX. Oct 21, 2009 Download for free at http://cnx.org/content/col11076/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Wiskunde graad 7' conversation and receive update notifications?