<< Chapter < Page Chapter >> Page >
  • Calculate the volume of a solid of revolution by using the method of cylindrical shells.
  • Compare the different methods for calculating a volume of revolution.

In this section, we examine the method of cylindrical shells, the final method for finding the volume of a solid of revolution. We can use this method on the same kinds of solids as the disk method or the washer method; however, with the disk and washer methods, we integrate along the coordinate axis parallel to the axis of revolution. With the method of cylindrical shells, we integrate along the coordinate axis perpendicular to the axis of revolution. The ability to choose which variable of integration we want to use can be a significant advantage with more complicated functions. Also, the specific geometry of the solid sometimes makes the method of using cylindrical shells more appealing than using the washer method. In the last part of this section, we review all the methods for finding volume that we have studied and lay out some guidelines to help you determine which method to use in a given situation.

The method of cylindrical shells

Again, we are working with a solid of revolution. As before, we define a region R , bounded above by the graph of a function y = f ( x ) , below by the x -axis, and on the left and right by the lines x = a and x = b , respectively, as shown in [link] (a). We then revolve this region around the y -axis, as shown in [link] (b). Note that this is different from what we have done before. Previously, regions defined in terms of functions of x were revolved around the x -axis or a line parallel to it.

This figure has two graphs. The first graph is labeled “a” and is an increasing curve in the first quadrant. The curve is labeled “y=f(x)”. The curve starts on the y-axis at y=a. Under the curve, above the x-axis is a shaded region labeled “R”. The shaded region is bounded on the right by the line x=b. The second graph is a three dimensional solid. It has been created by rotating the shaded region from “a” around the y-axis.
(a) A region bounded by the graph of a function of x . (b) The solid of revolution formed when the region is revolved around the y -axis .

As we have done many times before, partition the interval [ a , b ] using a regular partition, P = { x 0 , x 1 ,… , x n } and, for i = 1 , 2 ,… , n , choose a point x i * [ x i 1 , x i ] . Then, construct a rectangle over the interval [ x i 1 , x i ] of height f ( x i * ) and width Δ x . A representative rectangle is shown in [link] (a). When that rectangle is revolved around the y -axis, instead of a disk or a washer, we get a cylindrical shell, as shown in the following figure.

This figure has two images. The first is a cylindrical shell, hollow in the middle. It has a vertical axis in the center. There is also a curve that meets the top of the cylinder. The second image is a set of concentric cylinders, one inside of the other forming a nesting of cylinders.
(a) A representative rectangle. (b) When this rectangle is revolved around the y -axis , the result is a cylindrical shell. (c) When we put all the shells together, we get an approximation of the original solid.

To calculate the volume of this shell, consider [link] .

This figure is a graph in the first quadrant. The curve is increasing and labeled “y=f(x)”. The curve starts on the y-axis at f(x*). Below the curve is a shaded rectangle. The rectangle starts on the x-axis. The width of the rectangle is delta x. The two sides of the rectangle are labeled “xsub(i-1)” and “xsubi”.
Calculating the volume of the shell.

The shell is a cylinder, so its volume is the cross-sectional area multiplied by the height of the cylinder. The cross-sections are annuli (ring-shaped regions—essentially, circles with a hole in the center), with outer radius x i and inner radius x i 1 . Thus, the cross-sectional area is π x i 2 π x i 1 2 . The height of the cylinder is f ( x i * ) . Then the volume of the shell is

V shell = f ( x i * ) ( π x i 2 π x i 1 2 ) = π f ( x i * ) ( x i 2 x i 1 2 ) = π f ( x i * ) ( x i + x i 1 ) ( x i x i 1 ) = 2 π f ( x i * ) ( x i + x i 1 2 ) ( x i x i 1 ) .

Note that x i x i 1 = Δ x , so we have

V shell = 2 π f ( x i * ) ( x i + x i 1 2 ) Δ x .

Furthermore, x i + x i 1 2 is both the midpoint of the interval [ x i 1 , x i ] and the average radius of the shell, and we can approximate this by x i * . We then have

Questions & Answers

Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
what school?
biomolecules are e building blocks of every organics and inorganic materials.
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
sciencedirect big data base
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
characteristics of micro business
for teaching engĺish at school how nano technology help us
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
what is the actual application of fullerenes nowadays?
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
is Bucky paper clear?
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Do you know which machine is used to that process?
how to fabricate graphene ink ?
for screen printed electrodes ?
What is lattice structure?
s. Reply
of graphene you mean?
or in general
in general
Graphene has a hexagonal structure
On having this app for quite a bit time, Haven't realised there's a chat room in it.
what is biological synthesis of nanoparticles
Sanket Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Leaves accumulate on the forest floor at a rate of 2 g/cm2/yr and also decompose at a rate of 90% per year. Write a differential equation governing the number of grams of leaf litter per square centimeter of forest floor, assuming at time 0 there is no leaf litter on the ground. Does this amount approach a steady value? What is that value?
Abdul Reply
You have a cup of coffee at temperature 70°C, which you let cool 10 minutes before you pour in the same amount of milk at 1°C as in the preceding problem. How does the temperature compare to the previous cup after 10 minutes?
Practice Key Terms 1

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Calculus volume 2. OpenStax CNX. Feb 05, 2016 Download for free at http://cnx.org/content/col11965/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Calculus volume 2' conversation and receive update notifications?