# 2.3 Descriptive statistics: measuring the center of the data

 Page 1 / 4
This chapter discusses measuring descriptive statistical information using the center of the data

The "center" of a data set is also a way of describing location. The two most widely used measures of the "center" of the data are the mean (average) and the median . To calculate the mean weight of 50 people, add the 50 weights together and divide by 50. To find the median weight of the 50 people, order the data and find the number that splits the data into two equal parts (previously discussed under box plots in this chapter). The median is generally a better measure of the center when there are extreme values or outliers because it is not affected by the precise numerical values of the outliers. The mean is the most common measure of the center.

The words "mean" and "average" are often used interchangeably. The substitution of one word for the other is common practice. The technical term is "arithmetic mean" and "average" is technically a center location. However, in practice among non-statisticians, "average" is commonly accepted for "arithmetic mean."

The mean can also be calculated by multiplying each distinct value by its frequency and then dividing the sum by the total number of data values. The letter used to represent the sample mean is an $x$ with a bar over it (pronounced " $x$ bar"): $\overline{x}$ .

The Greek letter $\mu$ (pronounced "mew") represents the population mean. One of the requirements for the sample mean to be a good estimate of the population mean is for the sample taken to be truly random.

To see that both ways of calculating the mean are the same, consider the sample:

• 1
• 1
• 1
• 2
• 2
• 3
• 4
• 4
• 4
• 4
• 4

$\overline{x}=\frac{1+1+1+2+2+3+4+4+4+4+4}{11}=2.7$
$\overline{x}=\frac{3×1+2×2+1×3+5×4}{11}=2.7$

In the second calculation for the sample mean, the frequencies are 3, 2, 1, and 5.

You can quickly find the location of the median by using the expression $\frac{n+1}{2}$ .

The letter $n$ is the total number of data values in the sample. If $n$ is an odd number, the median is the middle value of the ordered data (ordered smallest to largest). If $n$ is an even number, the median is equal to the two middle values added together and divided by 2 after the data has been ordered. For example, if the total number of data values is 97, then $\frac{n+1}{2}$ = $\frac{97+1}{2}$ = $49$ . The median is the 49th value in the ordered data. If the total number of data values is 100, then $\frac{n+1}{2}$ = $\frac{100+1}{2}$ = $50.5$ . The median occurs midway between the 50th and 51st values. The location of the median and the value of the median are not the same. The upper case letter $M$ is often used to represent the median. The next example illustrates the location of the median and the value of the median.

AIDS data indicating the number of months an AIDS patient lives after taking a new antibody drug are as follows (smallest to largest):

• 3
• 4
• 8
• 8
• 10
• 11
• 12
• 13
• 14
• 15
• 15
• 16
• 16
• 17
• 17
• 18
• 21
• 22
• 22
• 24
• 24
• 25
• 26
• 26
• 27
• 27
• 29
• 29
• 31
• 32
• 33
• 33
• 34
• 34
• 35
• 37
• 40
• 44
• 44
• 47

Calculate the mean and the median.

The calculation for the mean is:

$\overline{x}=\frac{\left[3+4+\left(8\right)\left(2\right)+10+11+12+13+14+\left(15\right)\left(2\right)+\left(16\right)\left(2\right)+\text{...}+35+37+40+\left(44\right)\left(2\right)+47\right]}{40}=\mathrm{23.6}$

To find the median, M , first use the formula for the location. The location is:

$\frac{n+1}{2}=\frac{40+1}{2}=20.5$

Starting at the smallest value, the median is located between the 20th and 21st values (the two 24s):

• 3
• 4
• 8
• 8
• 10
• 11
• 12
• 13
• 14
• 15
• 15
• 16
• 16
• 17
• 17
• 18
• 21
• 22
• 22
• $24$
• $24$
• 25
• 26
• 26
• 27
• 27
• 29
• 29
• 31
• 32
• 33
• 33
• 34
• 34
• 35
• 37
• 40
• 44
• 44
• 47

$M=\frac{24+24}{2}=24$

The median is 24.

## Using the ti-83,83+,84, 84+ calculators

Calculator Instructions are located in the menu item 14:Appendix (Notes for the TI-83, 83+, 84, 84+ Calculators).
• Enter data into the list editor. Press STAT 1:EDIT
• Put the data values in list L1.
• Press STAT and arrow to CALC. Press 1:1-VarStats. Press 2nd 1 for L1 and ENTER.
• Press the down and up arrow keys to scroll.
$\overline{x}=\mathrm{23.6}$ , $M=\mathrm{24}$

Suppose that, in a small town of 50 people, one person earns $5,000,000 per year and the other 49 each earn$30,000. Which is the better measure of the "center," the mean or the median?

$\overline{x}=\frac{5000000+49×30000}{50}=129400$

$M=30000$

(There are 49 people who earn $30,000 and one person who earns$5,000,000.)

The median is a better measure of the "center" than the mean because 49 of the values are 30,000 and one is 5,000,000. The 5,000,000 is an outlier. The 30,000 gives us a better sense of the middle of the data.

Another measure of the center is the mode. The mode is the most frequent value. If a data set has two values that occur the same number of times, then the set is bimodal.

## Statistics exam scores for 20 students are as follows

Statistics exam scores for 20 students are as follows:

• 50
• 53
• 59
• 59
• 63
• 63
• 72
• 72
• 72
• 72
• 72
• 76
• 78
• 81
• 83
• 84
• 84
• 84
• 90
• 93

Find the mode.

The most frequent score is 72, which occurs five times. Mode = 72.

Five real estate exam scores are 430, 430, 480, 480, 495. The data set is bimodal because the scores 430 and 480 each occur twice.

When is the mode the best measure of the "center"? Consider a weight loss program that advertises a mean weight loss of six pounds the first week of the program. The mode might indicate that most people lose two pounds the first week, making the program less appealing.

The mode can be calculated for qualitative data as well as for quantitative data.

Statistical software will easily calculate the mean, the median, and the mode. Some graphing calculators can also make these calculations. In the real world, people make these calculations using software.

## The law of large numbers and the mean

The Law of Large Numbers says that if you take samples of larger and larger size from any population, then the mean $\overline{x}$ of the sample is very likely to get closer and closer to $µ$ . This is discussed in more detail in The Central Limit Theorem .

The formula for the mean is located in the Summary of Formulas section course.

## Sampling distributions and statistic of a sampling distribution

You can think of a sampling distribution as a relative frequency distribution with a great many samples. (See Sampling and Data for a review of relative frequency). Suppose thirty randomly selected students were asked the number of movies they watched the previous week. The results are in the relative frequency table shown below.

# of movies Relative Frequency
0 5/30
1 15/30
2 6/30
3 4/30
4 1/30

If you let the number of samples get very large (say, 300 million or more), the relative frequency table becomes a relative frequency distribution .

A statistic is a number calculated from a sample. Statistic examples include the mean, the median and the mode as well as others. The sample mean $\overline{x}$ is an example of a statistic which estimates the population mean $\mu$ .

where we get a research paper on Nano chemistry....?
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
Ali
what are the products of Nano chemistry?
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
revolt
da
Application of nanotechnology in medicine
what is variations in raman spectra for nanomaterials
I only see partial conversation and what's the question here!
what about nanotechnology for water purification
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
why we need to study biomolecules, molecular biology in nanotechnology?
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
why?
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!