# 2.2 Vectors in three dimensions  (Page 4/14)

 Page 4 / 14

## Definition

A sphere    is the set of all points in space equidistant from a fixed point, the center of the sphere ( [link] ), just as the set of all points in a plane that are equidistant from the center represents a circle. In a sphere, as in a circle, the distance from the center to a point on the sphere is called the radius . Each point ( x , y , z ) on the surface of a sphere is r units away from the center ( a , b , c ) .

The equation of a circle is derived using the distance formula in two dimensions. In the same way, the equation of a sphere is based on the three-dimensional formula for distance.

## Rule: equation of a sphere

The sphere with center $\left(a,b,c\right)$ and radius $r$ can be represented by the equation

${\left(x-a\right)}^{2}+{\left(y-b\right)}^{2}+{\left(z-c\right)}^{2}={r}^{2}.$

This equation is known as the standard equation of a sphere    .

## Finding an equation of a sphere

Find the standard equation of the sphere with center $\left(10,7,4\right)$ and point $\left(-1,3,-2\right),$ as shown in [link] . The sphere centered at ( 10 , 7 , 4 ) containing point ( −1 , 3 , −2 ) .

Use the distance formula to find the radius $r$ of the sphere:

$\begin{array}{cc}\hfill r& =\sqrt{{\left(-1-10\right)}^{2}+{\left(3-7\right)}^{2}+{\left(-2-4\right)}^{2}}\hfill \\ & =\sqrt{{\left(-11\right)}^{2}+{\left(-4\right)}^{2}+{\left(-6\right)}^{2}}\hfill \\ & =\sqrt{173}.\hfill \end{array}$

The standard equation of the sphere is

${\left(x-10\right)}^{2}+{\left(y-7\right)}^{2}+{\left(z-4\right)}^{2}=173.$

Find the standard equation of the sphere with center $\left(-2,4,-5\right)$ containing point $\left(4,4,-1\right).$

${\left(x+2\right)}^{2}+{\left(y-4\right)}^{2}+{\left(z+5\right)}^{2}=52$

## Finding the equation of a sphere

Let $P=\left(-5,2,3\right)$ and $Q=\left(3,4,-1\right),$ and suppose line segment $PQ$ forms the diameter of a sphere ( [link] ). Find the equation of the sphere.

Since $PQ$ is a diameter of the sphere, we know the center of the sphere is the midpoint of $PQ.$ Then,

$\begin{array}{cc}\hfill C& =\left(\frac{-5+3}{2},\frac{2+4}{2},\frac{3+\left(-1\right)}{2}\right)\hfill \\ & =\left(-1,3,1\right).\hfill \end{array}$

Furthermore, we know the radius of the sphere is half the length of the diameter. This gives

$\begin{array}{cc}\hfill r& =\frac{1}{2}\sqrt{{\left(-5-3\right)}^{2}+{\left(2-4\right)}^{2}+{\left(3-\left(-1\right)\right)}^{2}}\hfill \\ & =\frac{1}{2}\sqrt{64+4+16}\hfill \\ & =\sqrt{21}.\hfill \end{array}$

Then, the equation of the sphere is ${\left(x+1\right)}^{2}+{\left(y-3\right)}^{2}+{\left(z-1\right)}^{2}=21.$

Find the equation of the sphere with diameter $PQ,$ where $P=\left(2,-1,-3\right)$ and $Q=\left(-2,5,-1\right).$

${x}^{2}+{\left(y-2\right)}^{2}+{\left(z+2\right)}^{2}=14$

## Graphing other equations in three dimensions

Describe the set of points that satisfies $\left(x-4\right)\left(z-2\right)=0,$ and graph the set.

We must have either $x-4=0$ or $z-2=0,$ so the set of points forms the two planes $x=4$ and $z=2$ ( [link] ). The set of points satisfying ( x − 4 ) ( z − 2 ) = 0 forms the two planes x = 4 and z = 2 .

Describe the set of points that satisfies $\left(y+2\right)\left(z-3\right)=0,$ and graph the set.

The set of points forms the two planes $y=-2$ and $z=3.$ ## Graphing other equations in three dimensions

Describe the set of points in three-dimensional space that satisfies ${\left(x-2\right)}^{2}+{\left(y-1\right)}^{2}=4,$ and graph the set.

The x - and y -coordinates form a circle in the xy -plane of radius $2,$ centered at $\left(2,1\right).$ Since there is no restriction on the z -coordinate, the three-dimensional result is a circular cylinder of radius $2$ centered on the line with $x=2\phantom{\rule{0.2em}{0ex}}\text{and}\phantom{\rule{0.2em}{0ex}}y=1.$ The cylinder extends indefinitely in the z -direction ( [link] ). The set of points satisfying ( x − 2 ) 2 + ( y − 1 ) 2 = 4 . This is a cylinder of radius 2 centered on the line with x = 2 and y = 1 .

Describe the set of points in three dimensional space that satisfies ${x}^{2}+{\left(z-2\right)}^{2}=16,$ and graph the surface.

A cylinder of radius 4 centered on the line with $x=0\phantom{\rule{0.2em}{0ex}}\text{and}\phantom{\rule{0.2em}{0ex}}z=2.$ ## Working with vectors in ℝ 3

Just like two-dimensional vectors, three-dimensional vectors are quantities with both magnitude and direction, and they are represented by directed line segments (arrows). With a three-dimensional vector, we use a three-dimensional arrow.

how can chip be made from sand
are nano particles real
yeah
Joseph
Hello, if I study Physics teacher in bachelor, can I study Nanotechnology in master?
no can't
Lohitha
where we get a research paper on Nano chemistry....?
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
Ali
what are the products of Nano chemistry?
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
revolt
da
Application of nanotechnology in medicine
has a lot of application modern world
Kamaluddeen
yes
narayan
what is variations in raman spectra for nanomaterials
ya I also want to know the raman spectra
Bhagvanji
I only see partial conversation and what's the question here!
what about nanotechnology for water purification
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
can you provide the details of the parametric equations for the lines that defince doubly-ruled surfeces (huperbolids of one sheet and hyperbolic paraboloid). Can you explain each of the variables in the equations?

#### Get Jobilize Job Search Mobile App in your pocket Now! By Karen Gowdey By Mariah Hauptman By By Edgar Delgado By JavaChamp Team By Madison Christian By Vanessa Soledad By OpenStax By OpenStax By Richley Crapo