<< Chapter < Page Chapter >> Page >

Additionally, because race is a categorical variable that has three potential values—1 if white, 2 if black, and 3 otherwise—we have to create a dummy variable in order to use this variable. The transformations we use are shown in Figure 3.

Stata commands to transform the data.
Transformations of the variables to create new variables.

The last step before estimating the regressions is to identify the data set as a panel data. shows the two commands that must be entered in order for Stata to know that idcode is the individual category and that year is the time series variable. Figure 4 shows these two commands.

Declaring the category and time identifiers.
Declaring the category and time identifiers.

We are now ready to estimate the model (the natural logarithm of wages as a function of various variables). We begin with the random-effects model. Figure 5 shows the command and the results of the estimation of the random-effects model. There are several things to note here. First, in the command we are able to refer to all variables that have age in them by using age* , the * tells Stata to use and variable that begins with the letters age. Second, we will need to use the estimation results in the Hausman test. Thus, we have stored these results in “random_effects” using the command estimates store random_effects .

Stata output from the random-effects estimation.
The random-effects estimation.

Notice that three R-squared values are reported in Figure 5. Also, wages reach a peak when the woman is 0.036806 2 ( 0.0007133 ) = 25.7998 MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0YaaSaaaeaacaaIWaGaaiOlaiaaicdacaaIZaGaaGOnaiaaiIdacaaIWaGaaGOnaaqaaiaaikdadaqadaqaaiabgkHiTiaaicdacaGGUaGaaGimaiaaicdacaaIWaGaaG4naiaaigdacaaIZaGaaG4maaGaayjkaiaawMcaaaaacqGH9aqpcaaIYaGaaGynaiaac6cacaaI3aGaaGyoaiaaiMdacaaI4aaaaa@4CCE@ years old and after 9.795857 years on the job. The interpretation of the other variables demands a bit of algebra. For instance, the fact that black is a dummy variable affects our interpretation; when an individual is a black, her wage level is: ln w B = β 0 + β 1 + . MathType@MTEF@5@5@+=feaagyart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac6gacaWG3bWaaSbaaSqaaiaadkeaaeqaaOGaeyypa0JaeqOSdi2aaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaeqOSdi2aaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeS47IWKaaiOlaaaa@445D@ When she is nonblack, her wage level is ln w N B = β 0 + . MathType@MTEF@5@5@+=feaagyart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac6gacaWG3bWaaSbaaSqaaiaad6eacaWGcbaabeaakiabg2da9iabek7aInaaBaaaleaacaaIWaaabeaakiabgUcaRiabl+Uimjaac6caaaa@41BC@ Thus, we have: ln w B ln w N B = β 1 MathType@MTEF@5@5@+=feaagyart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac6gacaWG3bWaaSbaaSqaaiaadkeaaeqaaOGaeyOeI0IaciiBaiaac6gacaWG3bWaaSbaaSqaaiaad6eacaWGcbaabeaakiabg2da9iabek7aInaaBaaaleaacaaIXaaabeaaaaa@42FB@ or w B w N B = e β 1 = e 0.0530532 = 0.94833. MathType@MTEF@5@5@+=feaagyart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWG3bWaaSbaaSqaaiaadkeaaeqaaaGcbaGaam4DamaaBaaaleaacaWGobGaamOqaaqabaaaaOGaeyypa0JaamyzamaaCaaaleqabaGaeqOSdi2aaSbaaWqaaiaaigdaaeqaaaaakiabg2da9iaadwgadaahaaWcbeqaaiabgkHiTiaaicdacaGGUaGaaGimaiaaiwdacaaIZaGaaGimaiaaiwdacaaIZaGaaGOmaaaakiabg2da9iaaicdacaGGUaGaaGyoaiaaisdacaaI4aGaaG4maiaaiodacaGGUaaaaa@5001@ Thus, the wage level of a black is, everything else held constant, 94.8 percent of the wage level of a nonblack.

If we assume that grade is a continuous variable (it really is not), we have the following interpretation of the parameter: ln w = β 0 + β 1 g r a d e + MathType@MTEF@5@5@+=feaagyart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac6gacaWG3bGaeyypa0JaeqOSdi2aaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaeqOSdi2aaSbaaSqaaiaaigdaaeqaaOGaam4zaiaadkhacaWGHbGaamizaiaadwgacqGHRaWkcqWIVlctaaa@474A@ implies that 1 w w g r a d e = β 1 MathType@MTEF@5@5@+=feaagyart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaaabaGaam4DaaaadaWcaaqaaiabgkGi2kaadEhaaeaacqGHciITcaWGNbGaamOCaiaadggacaWGKbGaamyzaaaacqGH9aqpcqaHYoGydaWgaaWcbaGaaGymaaqabaaaaa@43BC@ . Thus, in our case a increase of 1 year of schooling causes wages to increase by 6.46 percent.

We can compare the results of using the re option with using the mle option (which directs Stata to use maximum likelihood techniques to estimate the parameters of the system. The mle parameter estimates, shown in Figure 6, are the same as those generated using the re command. However, the estimates of the standard errors (and, thus, the z-values) are different.

Stata output from the maximum likelihood estimation.
The maximum likelihood estimation.

The estimation of the fixed-effects model is straightforward and is shown in Figure 7. The command is the same as in the random-effects model but with the re replaced by fe . Notice from the results that the variables grade and black are dropped from the estimation results. They are dropped because the amount of schooling and race of an individual is fixed over all observations. These two variables, thus, are perfectly correlated with the dummy variables that hold constant the individual level characteristics. The effects of education and race differences are absorbed into the residual.

Questions & Answers

How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
scanning tunneling microscope
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
The nanotechnology is as new science, to scale nanometric
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
what school?
biomolecules are e building blocks of every organics and inorganic materials.
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
sciencedirect big data base
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
characteristics of micro business
for teaching engĺish at school how nano technology help us
How can I make nanorobot?
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
how can I make nanorobot?
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
what is the actual application of fullerenes nowadays?
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
is Bucky paper clear?
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Econometrics for honors students. OpenStax CNX. Jul 20, 2010 Download for free at http://cnx.org/content/col11208/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Econometrics for honors students' conversation and receive update notifications?