# 2.2 Graphs of the other trigonometric functions  (Page 8/9)

 Page 8 / 9

## Using the graphs of trigonometric functions to solve real-world problems

Many real-world scenarios represent periodic functions and may be modeled by trigonometric functions. As an example, let’s return to the scenario from the section opener. Have you ever observed the beam formed by the rotating light on a police car and wondered about the movement of the light beam itself across the wall? The periodic behavior of the distance the light shines as a function of time is obvious, but how do we determine the distance? We can use the tangent function .

## Using trigonometric functions to solve real-world scenarios

Suppose the function $\text{\hspace{0.17em}}y=5\mathrm{tan}\left(\frac{\pi }{4}t\right)\text{\hspace{0.17em}}$ marks the distance in the movement of a light beam from the top of a police car across a wall where $\text{\hspace{0.17em}}t\text{\hspace{0.17em}}$ is the time in seconds and $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ is the distance in feet from a point on the wall directly across from the police car.

1. Find and interpret the stretching factor and period.
2. Graph on the interval $\text{\hspace{0.17em}}\left[0,5\right].$
3. Evaluate $\text{\hspace{0.17em}}f\left(1\right)\text{\hspace{0.17em}}$ and discuss the function’s value at that input.
1. We know from the general form of $\text{\hspace{0.17em}}y=A\mathrm{tan}\left(Bt\right)\text{\hspace{0.17em}}$ that $\text{\hspace{0.17em}}|A|\text{\hspace{0.17em}}$ is the stretching factor and $\text{\hspace{0.17em}}\frac{\pi }{B}\text{\hspace{0.17em}}$ is the period.

We see that the stretching factor is 5. This means that the beam of light will have moved 5 ft after half the period.

The period is $\text{\hspace{0.17em}}\frac{\pi }{\frac{\pi }{4}}=\frac{\pi }{1}\cdot \frac{4}{\pi }=4.\text{\hspace{0.17em}}$ This means that every 4 seconds, the beam of light sweeps the wall. The distance from the spot across from the police car grows larger as the police car approaches.

2. To graph the function, we draw an asymptote at $\text{\hspace{0.17em}}t=2\text{\hspace{0.17em}}$ and use the stretching factor and period. See [link]
3. period: $\text{\hspace{0.17em}}f\left(1\right)=5\mathrm{tan}\left(\frac{\pi }{4}\left(1\right)\right)=5\left(1\right)=5;\text{\hspace{0.17em}}$ after 1 second, the beam of has moved 5 ft from the spot across from the police car.

Access these online resources for additional instruction and practice with graphs of other trigonometric functions.

## Key equations

 Shifted, compressed, and/or stretched tangent function $y=A\text{\hspace{0.17em}}\mathrm{tan}\left(Bx-C\right)+D$ Shifted, compressed, and/or stretched secant function $y=A\text{\hspace{0.17em}}\mathrm{sec}\left(Bx-C\right)+D$ Shifted, compressed, and/or stretched cosecant function $y=A\text{\hspace{0.17em}}\mathrm{csc}\left(Bx-C\right)+D$ Shifted, compressed, and/or stretched cotangent function $y=A\text{\hspace{0.17em}}\mathrm{cot}\left(Bx-C\right)+D$

## Key concepts

• The tangent function has period $\text{\hspace{0.17em}}\pi .$
• $f\left(x\right)=A\mathrm{tan}\left(Bx-C\right)+D\text{\hspace{0.17em}}$ is a tangent with vertical and/or horizontal stretch/compression and shift. See [link] , [link] , and [link] .
• The secant and cosecant are both periodic functions with a period of $\text{\hspace{0.17em}}2\pi .\text{\hspace{0.17em}}$ $f\left(x\right)=A\mathrm{sec}\left(Bx-C\right)+D\text{\hspace{0.17em}}$ gives a shifted, compressed, and/or stretched secant function graph. See [link] and [link] .
• $f\left(x\right)=A\mathrm{csc}\left(Bx-C\right)+D\text{\hspace{0.17em}}$ gives a shifted, compressed, and/or stretched cosecant function graph. See [link] and [link] .
• The cotangent function has period $\text{\hspace{0.17em}}\pi \text{\hspace{0.17em}}$ and vertical asymptotes at $\text{\hspace{0.17em}}0,±\pi ,±2\pi ,....$
• The range of cotangent is $\text{\hspace{0.17em}}\left(-\infty ,\infty \right),\text{\hspace{0.17em}}$ and the function is decreasing at each point in its range.
• The cotangent is zero at $\text{\hspace{0.17em}}±\frac{\pi }{2},±\frac{3\pi }{2},....$
• $f\left(x\right)=A\mathrm{cot}\left(Bx-C\right)+D\text{\hspace{0.17em}}$ is a cotangent with vertical and/or horizontal stretch/compression and shift. See [link] and [link] .
• Real-world scenarios can be solved using graphs of trigonometric functions. See [link] .

## Verbal

Explain how the graph of the sine function can be used to graph $\text{\hspace{0.17em}}y=\mathrm{csc}\text{\hspace{0.17em}}x.$

Since $\text{\hspace{0.17em}}y=\mathrm{csc}\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ is the reciprocal function of $\text{\hspace{0.17em}}y=\mathrm{sin}\text{\hspace{0.17em}}x,\text{\hspace{0.17em}}$ you can plot the reciprocal of the coordinates on the graph of $\text{\hspace{0.17em}}y=\mathrm{sin}\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ to obtain the y -coordinates of $\text{\hspace{0.17em}}y=\mathrm{csc}\text{\hspace{0.17em}}x.\text{\hspace{0.17em}}$ The x -intercepts of the graph $\text{\hspace{0.17em}}y=\mathrm{sin}\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ are the vertical asymptotes for the graph of $\text{\hspace{0.17em}}y=\mathrm{csc}\text{\hspace{0.17em}}x.$

how can chip be made from sand
is this allso about nanoscale material
Almas
are nano particles real
yeah
Joseph
Hello, if I study Physics teacher in bachelor, can I study Nanotechnology in master?
no can't
Lohitha
where is the latest information on a no technology how can I find it
William
currently
William
where we get a research paper on Nano chemistry....?
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
Ali
what are the products of Nano chemistry?
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
revolt
da
Application of nanotechnology in medicine
has a lot of application modern world
Kamaluddeen
yes
narayan
what is variations in raman spectra for nanomaterials
ya I also want to know the raman spectra
Bhagvanji
I only see partial conversation and what's the question here!
what about nanotechnology for water purification
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Berger describes sociologists as concerned with
what is hormones?
Wellington
Got questions? Join the online conversation and get instant answers!