# 2.2 Graphs of the other trigonometric functions  (Page 3/9)

 Page 3 / 9
$f\left(x\right)=A\mathrm{tan}\left(Bx-C\right)+D$

The graph of a transformed tangent function is different from the basic tangent function $\text{\hspace{0.17em}}\mathrm{tan}\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ in several ways:

## Features of the graph of y = A Tan( Bx − C )+ D

• The stretching factor is $\text{\hspace{0.17em}}|A|.$
• The period is $\text{\hspace{0.17em}}\frac{\pi }{|B|}.$
• The domain is $\text{\hspace{0.17em}}x\ne \frac{C}{B}+\frac{\pi }{|B|}k,$ where $\text{\hspace{0.17em}}k\text{\hspace{0.17em}}$ is an integer.
• The range is $\text{\hspace{0.17em}}\left(\mathrm{-\infty },-|A|\right]\cup \left[|A|,\infty \right).$
• The vertical asymptotes occur at $\text{\hspace{0.17em}}x=\frac{C}{B}+\frac{\pi }{2|B|}k,$ where $\text{\hspace{0.17em}}k\text{\hspace{0.17em}}$ is an odd integer.
• There is no amplitude.
• $y=A\text{\hspace{0.17em}}\mathrm{tan}\left(Bx\right)\text{\hspace{0.17em}}$ is and odd function because it is the qoutient of odd and even functions(sin and cosine perspectively).

Given the function $\text{\hspace{0.17em}}y=A\mathrm{tan}\left(Bx-C\right)+D,\text{\hspace{0.17em}}$ sketch the graph of one period.

1. Express the function given in the form $\text{\hspace{0.17em}}y=A\mathrm{tan}\left(Bx-C\right)+D.$
2. Identify the stretching/compressing factor , $\text{\hspace{0.17em}}|A|.$
3. Identify $\text{\hspace{0.17em}}B\text{\hspace{0.17em}}$ and determine the period, $\text{\hspace{0.17em}}P=\frac{\pi }{|B|}.$
4. Identify $\text{\hspace{0.17em}}C\text{\hspace{0.17em}}$ and determine the phase shift, $\text{\hspace{0.17em}}\frac{C}{B}.$
5. Draw the graph of $\text{\hspace{0.17em}}y=A\mathrm{tan}\left(Bx\right)\text{\hspace{0.17em}}$ shifted to the right by $\text{\hspace{0.17em}}\frac{C}{B}\text{\hspace{0.17em}}$ and up by $\text{\hspace{0.17em}}D.$
6. Sketch the vertical asymptotes, which occur at where is an odd integer.
7. Plot any three reference points and draw the graph through these points.

## Graphing one period of a shifted tangent function

Graph one period of the function $\text{\hspace{0.17em}}y=-2\mathrm{tan}\left(\pi x+\pi \right)\text{\hspace{0.17em}}-1.$

• Step 1. The function is already written in the form $\text{\hspace{0.17em}}y=A\mathrm{tan}\left(Bx-C\right)+D.$
• Step 2. $\text{\hspace{0.17em}}A=-2,\text{\hspace{0.17em}}$ so the stretching factor is $\text{\hspace{0.17em}}|A|=2.$
• Step 3. $\text{\hspace{0.17em}}B=\pi ,\text{\hspace{0.17em}}$ so the period is $\text{\hspace{0.17em}}P=\frac{\pi }{|B|}=\frac{\pi }{\pi }=1.$
• Step 4. $\text{\hspace{0.17em}}C=-\pi ,\text{\hspace{0.17em}}$ so the phase shift is $\text{\hspace{0.17em}}\frac{C}{B}=\frac{-\pi }{\pi }=-1.$
• Step 5-7. The asymptotes are at $\text{\hspace{0.17em}}x=-\frac{3}{2}\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}x=-\frac{1}{2}\text{\hspace{0.17em}}$ and the three recommended reference points are $\text{\hspace{0.17em}}\left(-1.25,1\right),\text{\hspace{0.17em}}$ $\left(-1,-1\right),\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\left(-0.75,-3\right).\text{\hspace{0.17em}}$ The graph is shown in [link] .

How would the graph in [link] look different if we made $\text{\hspace{0.17em}}A=2\text{\hspace{0.17em}}$ instead of $\text{\hspace{0.17em}}-2?$

It would be reflected across the line $\text{\hspace{0.17em}}y=-1,\text{\hspace{0.17em}}$ becoming an increasing function.

Given the graph of a tangent function, identify horizontal and vertical stretches.

1. Find the period $\text{\hspace{0.17em}}P\text{\hspace{0.17em}}$ from the spacing between successive vertical asymptotes or x -intercepts.
2. Write $\text{\hspace{0.17em}}f\left(x\right)=A\mathrm{tan}\left(\frac{\pi }{P}x\right).$
3. Determine a convenient point $\text{\hspace{0.17em}}\left(x,f\left(x\right)\right)\text{\hspace{0.17em}}$ on the given graph and use it to determine $\text{\hspace{0.17em}}A.$

## Identifying the graph of a stretched tangent

Find a formula for the function graphed in [link] .

The graph has the shape of a tangent function.

• Step 1. One cycle extends from –4 to 4, so the period is $\text{\hspace{0.17em}}P=8.\text{\hspace{0.17em}}$ Since $\text{\hspace{0.17em}}P=\frac{\pi }{|B|},\text{\hspace{0.17em}}$ we have $\text{\hspace{0.17em}}B=\frac{\pi }{P}=\frac{\pi }{8}.$
• Step 2. The equation must have the form $f\left(x\right)=A\mathrm{tan}\left(\frac{\pi }{8}x\right).$
• Step 3. To find the vertical stretch $\text{\hspace{0.17em}}A,$ we can use the point $\text{\hspace{0.17em}}\left(2,2\right).$
$2=A\mathrm{tan}\left(\frac{\pi }{8}\cdot 2\right)=A\mathrm{tan}\left(\frac{\pi }{4}\right)$

Because $\text{\hspace{0.17em}}\mathrm{tan}\left(\frac{\pi }{4}\right)=1,\text{\hspace{0.17em}}$ $A=2.$

This function would have a formula $\text{\hspace{0.17em}}f\left(x\right)=2\mathrm{tan}\left(\frac{\pi }{8}x\right).$

Find a formula for the function in [link] .

$g\left(x\right)=4\mathrm{tan}\left(2x\right)$

## Analyzing the graphs of y = sec x And y = csc x

The secant    was defined by the reciprocal identity $\text{\hspace{0.17em}}\mathrm{sec}\text{\hspace{0.17em}}x=\frac{1}{\mathrm{cos}\text{\hspace{0.17em}}x}.\text{\hspace{0.17em}}$ Notice that the function is undefined when the cosine is 0, leading to vertical asymptotes at $\text{\hspace{0.17em}}\frac{\pi }{2},\text{\hspace{0.17em}}$ $\frac{3\pi }{2},\text{\hspace{0.17em}}$ etc. Because the cosine is never more than 1 in absolute value, the secant, being the reciprocal, will never be less than 1 in absolute value.

We can graph $\text{\hspace{0.17em}}y=\mathrm{sec}\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ by observing the graph of the cosine function because these two functions are reciprocals of one another. See [link] . The graph of the cosine is shown as a dashed orange wave so we can see the relationship. Where the graph of the cosine function decreases, the graph of the secant function increases. Where the graph of the cosine function increases, the graph of the secant function decreases. When the cosine function is zero, the secant is undefined.

where we get a research paper on Nano chemistry....?
what are the products of Nano chemistry?
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
Preparation and Applications of Nanomaterial for Drug Delivery
revolt
da
Application of nanotechnology in medicine
what is variations in raman spectra for nanomaterials
I only see partial conversation and what's the question here!
what about nanotechnology for water purification
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
why we need to study biomolecules, molecular biology in nanotechnology?
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
why?
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers! By Nicole Duquette By OpenStax By John Gabrieli By OpenStax By Janet Forrester By John Gabrieli By Janet Forrester By Cath Yu By John Gabrieli By Rohini Ajay