# 2.2 Graphs of the other trigonometric functions  (Page 3/9)

 Page 3 / 9
$f\left(x\right)=A\mathrm{tan}\left(Bx-C\right)+D$

The graph of a transformed tangent function is different from the basic tangent function $\text{\hspace{0.17em}}\mathrm{tan}\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ in several ways:

## Features of the graph of y = A Tan( Bx − C )+ D

• The stretching factor is $\text{\hspace{0.17em}}|A|.$
• The period is $\text{\hspace{0.17em}}\frac{\pi }{|B|}.$
• The domain is $\text{\hspace{0.17em}}x\ne \frac{C}{B}+\frac{\pi }{|B|}k,$ where $\text{\hspace{0.17em}}k\text{\hspace{0.17em}}$ is an integer.
• The range is $\text{\hspace{0.17em}}\left(\mathrm{-\infty },-|A|\right]\cup \left[|A|,\infty \right).$
• The vertical asymptotes occur at $\text{\hspace{0.17em}}x=\frac{C}{B}+\frac{\pi }{2|B|}k,$ where $\text{\hspace{0.17em}}k\text{\hspace{0.17em}}$ is an odd integer.
• There is no amplitude.
• $y=A\text{\hspace{0.17em}}\mathrm{tan}\left(Bx\right)\text{\hspace{0.17em}}$ is and odd function because it is the qoutient of odd and even functions(sin and cosine perspectively).

Given the function $\text{\hspace{0.17em}}y=A\mathrm{tan}\left(Bx-C\right)+D,\text{\hspace{0.17em}}$ sketch the graph of one period.

1. Express the function given in the form $\text{\hspace{0.17em}}y=A\mathrm{tan}\left(Bx-C\right)+D.$
2. Identify the stretching/compressing factor , $\text{\hspace{0.17em}}|A|.$
3. Identify $\text{\hspace{0.17em}}B\text{\hspace{0.17em}}$ and determine the period, $\text{\hspace{0.17em}}P=\frac{\pi }{|B|}.$
4. Identify $\text{\hspace{0.17em}}C\text{\hspace{0.17em}}$ and determine the phase shift, $\text{\hspace{0.17em}}\frac{C}{B}.$
5. Draw the graph of $\text{\hspace{0.17em}}y=A\mathrm{tan}\left(Bx\right)\text{\hspace{0.17em}}$ shifted to the right by $\text{\hspace{0.17em}}\frac{C}{B}\text{\hspace{0.17em}}$ and up by $\text{\hspace{0.17em}}D.$
6. Sketch the vertical asymptotes, which occur at where is an odd integer.
7. Plot any three reference points and draw the graph through these points.

## Graphing one period of a shifted tangent function

Graph one period of the function $\text{\hspace{0.17em}}y=-2\mathrm{tan}\left(\pi x+\pi \right)\text{\hspace{0.17em}}-1.$

• Step 1. The function is already written in the form $\text{\hspace{0.17em}}y=A\mathrm{tan}\left(Bx-C\right)+D.$
• Step 2. $\text{\hspace{0.17em}}A=-2,\text{\hspace{0.17em}}$ so the stretching factor is $\text{\hspace{0.17em}}|A|=2.$
• Step 3. $\text{\hspace{0.17em}}B=\pi ,\text{\hspace{0.17em}}$ so the period is $\text{\hspace{0.17em}}P=\frac{\pi }{|B|}=\frac{\pi }{\pi }=1.$
• Step 4. $\text{\hspace{0.17em}}C=-\pi ,\text{\hspace{0.17em}}$ so the phase shift is $\text{\hspace{0.17em}}\frac{C}{B}=\frac{-\pi }{\pi }=-1.$
• Step 5-7. The asymptotes are at $\text{\hspace{0.17em}}x=-\frac{3}{2}\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}x=-\frac{1}{2}\text{\hspace{0.17em}}$ and the three recommended reference points are $\text{\hspace{0.17em}}\left(-1.25,1\right),\text{\hspace{0.17em}}$ $\left(-1,-1\right),\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\left(-0.75,-3\right).\text{\hspace{0.17em}}$ The graph is shown in [link] .

How would the graph in [link] look different if we made $\text{\hspace{0.17em}}A=2\text{\hspace{0.17em}}$ instead of $\text{\hspace{0.17em}}-2?$

It would be reflected across the line $\text{\hspace{0.17em}}y=-1,\text{\hspace{0.17em}}$ becoming an increasing function.

Given the graph of a tangent function, identify horizontal and vertical stretches.

1. Find the period $\text{\hspace{0.17em}}P\text{\hspace{0.17em}}$ from the spacing between successive vertical asymptotes or x -intercepts.
2. Write $\text{\hspace{0.17em}}f\left(x\right)=A\mathrm{tan}\left(\frac{\pi }{P}x\right).$
3. Determine a convenient point $\text{\hspace{0.17em}}\left(x,f\left(x\right)\right)\text{\hspace{0.17em}}$ on the given graph and use it to determine $\text{\hspace{0.17em}}A.$

## Identifying the graph of a stretched tangent

Find a formula for the function graphed in [link] .

The graph has the shape of a tangent function.

• Step 1. One cycle extends from –4 to 4, so the period is $\text{\hspace{0.17em}}P=8.\text{\hspace{0.17em}}$ Since $\text{\hspace{0.17em}}P=\frac{\pi }{|B|},\text{\hspace{0.17em}}$ we have $\text{\hspace{0.17em}}B=\frac{\pi }{P}=\frac{\pi }{8}.$
• Step 2. The equation must have the form $f\left(x\right)=A\mathrm{tan}\left(\frac{\pi }{8}x\right).$
• Step 3. To find the vertical stretch $\text{\hspace{0.17em}}A,$ we can use the point $\text{\hspace{0.17em}}\left(2,2\right).$
$2=A\mathrm{tan}\left(\frac{\pi }{8}\cdot 2\right)=A\mathrm{tan}\left(\frac{\pi }{4}\right)$

Because $\text{\hspace{0.17em}}\mathrm{tan}\left(\frac{\pi }{4}\right)=1,\text{\hspace{0.17em}}$ $A=2.$

This function would have a formula $\text{\hspace{0.17em}}f\left(x\right)=2\mathrm{tan}\left(\frac{\pi }{8}x\right).$

Find a formula for the function in [link] .

$g\left(x\right)=4\mathrm{tan}\left(2x\right)$

## Analyzing the graphs of y = sec x And y = csc x

The secant    was defined by the reciprocal identity $\text{\hspace{0.17em}}\mathrm{sec}\text{\hspace{0.17em}}x=\frac{1}{\mathrm{cos}\text{\hspace{0.17em}}x}.\text{\hspace{0.17em}}$ Notice that the function is undefined when the cosine is 0, leading to vertical asymptotes at $\text{\hspace{0.17em}}\frac{\pi }{2},\text{\hspace{0.17em}}$ $\frac{3\pi }{2},\text{\hspace{0.17em}}$ etc. Because the cosine is never more than 1 in absolute value, the secant, being the reciprocal, will never be less than 1 in absolute value.

We can graph $\text{\hspace{0.17em}}y=\mathrm{sec}\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ by observing the graph of the cosine function because these two functions are reciprocals of one another. See [link] . The graph of the cosine is shown as a dashed orange wave so we can see the relationship. Where the graph of the cosine function decreases, the graph of the secant function increases. Where the graph of the cosine function increases, the graph of the secant function decreases. When the cosine function is zero, the secant is undefined.

#### Questions & Answers

how can chip be made from sand
Eke Reply
is this allso about nanoscale material
Almas
are nano particles real
Missy Reply
yeah
Joseph
Hello, if I study Physics teacher in bachelor, can I study Nanotechnology in master?
Lale Reply
no can't
Lohitha
where is the latest information on a no technology how can I find it
William
currently
William
where we get a research paper on Nano chemistry....?
Maira Reply
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
Ali
what are the products of Nano chemistry?
Maira Reply
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
Google
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
Hafiz Reply
revolt
da
Application of nanotechnology in medicine
has a lot of application modern world
Kamaluddeen
yes
narayan
what is variations in raman spectra for nanomaterials
Jyoti Reply
ya I also want to know the raman spectra
Bhagvanji
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
LITNING Reply
what is a peer
LITNING Reply
What is meant by 'nano scale'?
LITNING Reply
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

### Read also:

#### Get Jobilize Job Search Mobile App in your pocket Now!

Source:  OpenStax, Essential precalculus, part 2. OpenStax CNX. Aug 20, 2015 Download for free at http://legacy.cnx.org/content/col11845/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Essential precalculus, part 2' conversation and receive update notifications?

 By OpenStax By Zarina Chocolate By OpenStax By Jazzycazz Jackson By OpenStax By JavaChamp Team By OpenStax By Stephen Voron By Robert Morris By OpenStax