<< Chapter < Page Chapter >> Page >

Making connections: take-home investigation with two strips of paper

For a good illustration of Bernoulli’s principle, make two strips of paper, each about 15 cm long and 4 cm wide. Hold the small end of one strip up to your lips and let it drape over your finger. Blow across the paper. What happens? Now hold two strips of paper up to your lips, separated by your fingers. Blow between the strips. What happens?

Velocity measurement

[link] shows two devices that measure fluid velocity based on Bernoulli’s principle. The manometer in [link] (a) is connected to two tubes that are small enough not to appreciably disturb the flow. The tube facing the oncoming fluid creates a dead spot having zero velocity ( v 1 = 0 size 12{v rSub { size 8{1} } =0} {} ) in front of it, while fluid passing the other tube has velocity v 2 size 12{v rSub { size 8{2} } } {} . This means that Bernoulli’s principle as stated in P 1 + 1 2 ρv 1 2 = P 2 + 1 2 ρv 2 2 size 12{P rSub { size 8{1} } + { {1} over {2} } ρv rSub { size 8{1} } "" lSup { size 8{2} } =P rSub { size 8{2} } + { {1} over {2} } ρv rSub { size 8{2} } "" lSup { size 8{2} } } {} becomes

P 1 = P 2 + 1 2 ρv 2 2 . size 12{P rSub { size 8{1} } =P rSub { size 8{2} } + { {1} over {2} } ρv rSub { size 8{2} } "" lSup { size 8{2} } "." } {}
Part a of the figure shows a picture of a wing. It is in the form of an aerofoil. One side of the wing is broader and the other end tapers. The direction of the air is shown as lines along the length of the wing. The direction of the air below the wing is shown as flowing along the length of the wing. The pressure exerted by the air given by P b is upward. The direction of the air on the top or front part of the wing is shown as flowing along the length of the wing. The pressure exerted by the air is given by P f, and it acts downward. Part b of the figure shows a boat with a sail. The direction of the sail is almost across the boat. The direction of the air in the sail is shown by lines on the front and back sides of the sail. The air currents on the front exert a pressure P front toward the sail, and air currents on the back sides of sail exert a pressure P back again toward the sail.
(a) The Bernoulli principle helps explain lift generated by a wing. (b) Sails use the same technique to generate part of their thrust.

Thus pressure P 2 size 12{P rSub { size 8{2} } } {} over the second opening is reduced by 1 2 ρv 2 2 size 12{ { { size 8{1} } over { size 8{2} } } ρv rSub { size 8{2} } rSup { size 8{2} } } {} , and so the fluid in the manometer rises by h on the side connected to the second opening, where

h 1 2 ρv 2 2 . size 12{h prop { {1} over {2} } ρv rSub { size 8{2} } rSup { size 8{2} } "."} {}

(Recall that the symbol size 12{ prop } {} means “proportional to.”) Solving for v 2 size 12{v rSub { size 8{2} } } {} , we see that

v 2 h . size 12{v rSub { size 8{2} } prop sqrt {h} "."} {}

[link] (b) shows a version of this device that is in common use for measuring various fluid velocities; such devices are frequently used as air speed indicators in aircraft.

Part a shows a U-shaped manometer tube connected to ends of two tubes which are placed close together. Tube one is open on the end and shows a velocity v one equals zero at the end. Tube two has an opening on the side and shows a velocity v two across the opening. The level of fluid in the U-shaped tube is more on the right side than on the left. The difference in height is shown by h. Part b of the figure shows a velocity measuring device a pitot tube. Two coaxial tubes, one broader outside and other narrow inside are connected to a U-shaped tube. The U-shaped tube is also narrow at one end and broader at the other. The narrow end of the U-shaped tube is connected to the narrow inner tube and the broader end of the U-shaped tube is connected to the broader outer tube. The tube one has an opening at one of its edges and the velocity of the fluid at the end is v one equals zero. Tube two has an opening on the side and shows a velocity v two across the opening. The level of fluid in the U-shaped tube is more on the right side than on the left. The difference in height is shown by h.
Measurement of fluid speed based on Bernoulli’s principle. (a) A manometer is connected to two tubes that are close together and small enough not to disturb the flow. Tube 1 is open at the end facing the flow. A dead spot having zero speed is created there. Tube 2 has an opening on the side, and so the fluid has a speed v across the opening; thus, pressure there drops. The difference in pressure at the manometer is 1 2 ρv 2 2 size 12{ { { size 8{1} } over { size 8{2} } } ρv rSub { size 8{2} } rSup { size 8{2} } } {} , and so h is proportional to 1 2 ρv 2 2 size 12{ { { size 8{1} } over { size 8{2} } } ρv rSub { size 8{2} } rSup { size 8{2} } } {} . (b) This type of velocity measuring device is a Prandtl tube, also known as a pitot tube.

Summary

  • Bernoulli’s equation states that the sum on each side of the following equation is constant, or the same at any two points in an incompressible frictionless fluid:
    P 1 + 1 2 ρv 1 2 + ρ gh 1 = P 2 + 1 2 ρv 2 2 + ρ gh 2 . size 12{P rSub { size 8{1} } + { { size 8{1} } over { size 8{2} } } ρv rSub { size 8{1} } rSup { size 8{2} } +ρ ital "gh" rSub { size 8{1} } =P rSub { size 8{2} } + { { size 8{1} } over { size 8{2} } } ρv rSub { size 8{2} } rSup { size 8{2} } +ρ ital "gh" rSub { size 8{2} } } {}
  • Bernoulli’s principle is Bernoulli’s equation applied to situations in which depth is constant. The terms involving depth (or height h ) subtract out, yielding
    P 1 + 1 2 ρv 1 2 = P 2 + 1 2 ρv 2 2 . size 12{P rSub { size 8{1} } + { { size 8{1} } over { size 8{2} } } ρv rSub { size 8{1} } rSup { size 8{2} } =P rSub { size 8{2} } + { { size 8{1} } over { size 8{2} } } ρv rSub { size 8{2} } rSup { size 8{2} } } {}
  • Bernoulli’s principle has many applications, including entrainment, wings and sails, and velocity measurement.

Conceptual questions

You can squirt water a considerably greater distance by placing your thumb over the end of a garden hose and then releasing, than by leaving it completely uncovered. Explain how this works.

Water is shot nearly vertically upward in a decorative fountain and the stream is observed to broaden as it rises. Conversely, a stream of water falling straight down from a faucet narrows. Explain why, and discuss whether surface tension enhances or reduces the effect in each case.

Look back to [link] . Answer the following two questions. Why is P o size 12{P rSub { size 8{o} } } {} less than atmospheric? Why is P o size 12{P rSub { size 8{o} } } {} greater than P i size 12{P rSub { size 8{i} } } {} ?

Questions & Answers

what is variations in raman spectra for nanomaterials
Jyoti Reply
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
LITNING Reply
what is a peer
LITNING Reply
What is meant by 'nano scale'?
LITNING Reply
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, College physics (engineering physics 2, tuas). OpenStax CNX. May 08, 2014 Download for free at http://legacy.cnx.org/content/col11649/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics (engineering physics 2, tuas)' conversation and receive update notifications?

Ask