<< Chapter < Page Chapter >> Page >
  • Calculate flow rate.
  • Define units of volume.
  • Describe incompressible fluids.
  • Explain the consequences of the equation of continuity.

Flow rate Q size 12{Q} {} is defined to be the volume of fluid passing by some location through an area during a period of time, as seen in [link] . In symbols, this can be written as

Q = V t , size 12{Q= { {V} over {t} } } {}

where V size 12{V} {} is the volume and t size 12{t} {} is the elapsed time.

The SI unit for flow rate is m 3 /s size 12{m rSup { size 8{3} } "/s"} {} , but a number of other units for Q size 12{Q} {} are in common use. For example, the heart of a resting adult pumps blood at a rate of 5.00 liters per minute (L/min). Note that a liter    (L) is 1/1000 of a cubic meter or 1000 cubic centimeters ( 10 3 m 3 size 12{"10" rSup { size 8{ - 3} } `m rSup { size 8{3} } } {} or 10 3 cm 3 size 12{"10" rSup { size 8{3} } `"cm" rSup { size 8{3} } } {} ). In this text we shall use whatever metric units are most convenient for a given situation.

The figure shows a fluid flowing through a cylindrical pipe open at both ends. A portion of the cylindrical pipe with the fluid is shaded for a length d. The velocity of the fluid in the shaded region is shown by v toward the right. The cross sections of the shaded cylinder are marked as A. This cylinder of fluid flows past a point P on the cylindrical pipe. The velocity v is equal to d over t.
Flow rate is the volume of fluid per unit time flowing past a point through the area A size 12{A} {} . Here the shaded cylinder of fluid flows past point P size 12{P} {} in a uniform pipe in time t size 12{t} {} . The volume of the cylinder is Ad size 12{ ital "Ad"} {} and the average velocity is v ¯ = d / t size 12{ {overline {v}} =d/t} {} so that the flow rate is Q = Ad / t = A v ¯ size 12{Q= ital "Ad"/t=A {overline {v}} } {} .

Calculating volume from flow rate: the heart pumps a lot of blood in a lifetime

How many cubic meters of blood does the heart pump in a 75-year lifetime, assuming the average flow rate is 5.00 L/min?

Strategy

Time and flow rate Q size 12{Q} {} are given, and so the volume V size 12{V} {} can be calculated from the definition of flow rate.

Solution

Solving Q = V / t size 12{Q=V/t} {} for volume gives

V = Qt . size 12{V= ital "Qt"} {}

Substituting known values yields

V = 5 . 00 L 1 min ( 75 y ) 1 m 3 10 3 L 5 . 26 × 10 5 min y = 2 . 0 × 10 5 m 3 . alignl { stack { size 12{V= left ( { {5 "." "00"" L"} over {"1 min"} } right ) \( "75"" y" \) left ( { {1" m" rSup { size 8{3} } } over {"10" rSup { size 8{3} } " L"} } right ) left (5 "." "26" times "10" rSup { size 8{5} } { {"min"} over {y} } right )} {} #" "=2 "." 0 times "10" rSup { size 8{5} } " m" rSup { size 8{3} } {} } } {}

Discussion

This amount is about 200,000 tons of blood. For comparison, this value is equivalent to about 200 times the volume of water contained in a 6-lane 50-m lap pool.

Flow rate and velocity are related, but quite different, physical quantities. To make the distinction clear, think about the flow rate of a river. The greater the velocity of the water, the greater the flow rate of the river. But flow rate also depends on the size of the river. A rapid mountain stream carries far less water than the Amazon River in Brazil, for example. The precise relationship between flow rate Q size 12{Q} {} and velocity v ¯ size 12{ {overline {v}} } {} is

Q = A v ¯ , size 12{Q=A {overline {v}} } {}

where A size 12{A} {} is the cross-sectional area and v ¯ size 12{ {overline {v}} } {} is the average velocity. This equation seems logical enough. The relationship tells us that flow rate is directly proportional to both the magnitude of the average velocity (hereafter referred to as the speed) and the size of a river, pipe, or other conduit. The larger the conduit, the greater its cross-sectional area. [link] illustrates how this relationship is obtained. The shaded cylinder has a volume

V = Ad , size 12{V= ital "Ad"} {}

which flows past the point P size 12{P} {} in a time t size 12{t} {} . Dividing both sides of this relationship by t size 12{t} {} gives

V t = Ad t . size 12{ { {V} over {t} } = { { ital "Ad"} over {t} } } {}

We note that Q = V / t size 12{Q=V/t} {} and the average speed is v ¯ = d / t size 12{ {overline {v}} =d/t} {} . Thus the equation becomes Q = A v ¯ size 12{Q=A {overline {v}} } {} .

[link] shows an incompressible fluid flowing along a pipe of decreasing radius. Because the fluid is incompressible, the same amount of fluid must flow past any point in the tube in a given time to ensure continuity of flow. In this case, because the cross-sectional area of the pipe decreases, the velocity must necessarily increase. This logic can be extended to say that the flow rate must be the same at all points along the pipe. In particular, for points 1 and 2,

Questions & Answers

where we get a research paper on Nano chemistry....?
Maira Reply
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
Ali
what are the products of Nano chemistry?
Maira Reply
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
Google
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
Hafiz Reply
revolt
da
Application of nanotechnology in medicine
what is variations in raman spectra for nanomaterials
Jyoti Reply
ya I also want to know the raman spectra
Bhagvanji
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
LITNING Reply
what is a peer
LITNING Reply
What is meant by 'nano scale'?
LITNING Reply
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, College physics (engineering physics 2, tuas). OpenStax CNX. May 08, 2014 Download for free at http://legacy.cnx.org/content/col11649/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics (engineering physics 2, tuas)' conversation and receive update notifications?

Ask
Danielle Stephens
Start Quiz
Sarah Warren
Start Test
Keyaira Braxton
Start Exam
Robert Murphy
Start Test