<< Chapter < Page Chapter >> Page >
  • Outline the invention of a telescope.
  • Describe the working of a telescope.

Telescopes are meant for viewing distant objects, producing an image that is larger than the image that can be seen with the unaided eye. Telescopes gather far more light than the eye, allowing dim objects to be observed with greater magnification and better resolution. Although Galileo is often credited with inventing the telescope, he actually did not. What he did was more important. He constructed several early telescopes, was the first to study the heavens with them, and made monumental discoveries using them. Among these are the moons of Jupiter, the craters and mountains on the Moon, the details of sunspots, and the fact that the Milky Way is composed of vast numbers of individual stars.

[link] (a) shows a telescope made of two lenses, the convex objective and the concave eyepiece, the same construction used by Galileo. Such an arrangement produces an upright image and is used in spyglasses and opera glasses.

Part a of the figure depicts the internal functioning of a telescope; from left to right it has an upright image of a tree, a convex lens objective, a concave lens eyepiece, and a picture of eye where rays enter. Parallel rays strike the objective convex lens, converge; strike the concave eyepiece, and enter the eye. Dotted lines from the striking rays of the eyepiece are drawn backside and join at the beginning of the final image. Part b of the figure, from left to right, has an inverted enlarged image of a tree, a convex objective, a smaller inverted image of a tree, a convex eyepiece and a picture of an eye viewing the image. Rays from a very distant object pass through the objective lens, focus at a focal point f sub o, forming a smaller upside-down image of a tree of height h sub i, converge and pass through the eyepiece to reach the eye. Dotted lines drawn backwards focus at the tip of the final enlarged inverted image of a tree of height h prime sub i, from the rays striking the eyepiece are also shown. An angle theta, subtended by the rays striking the objective lens and an angle, subtended by the telescopic enlarged inverted image are also depicted.
(a) Galileo made telescopes with a convex objective and a concave eyepiece. These produce an upright image and are used in spyglasses. (b) Most simple telescopes have two convex lenses. The objective forms a case 1 image that is the object for the eyepiece. The eyepiece forms a case 2 final image that is magnified.

The most common two-lens telescope, like the simple microscope, uses two convex lenses and is shown in [link] (b). The object is so far away from the telescope that it is essentially at infinity compared with the focal lengths of the lenses ( d o ). The first image is thus produced at d i = f o , as shown in the figure. To prove this, note that

1 d i = 1 f o 1 d o = 1 f o 1 . size 12{ { {1} over {d rSub { size 8{i} } } } = { {1} over {f rSub { size 8{o} } } } - { {1} over {d rSub { size 8{o} } } } = { {1} over {f rSub { size 8{o} } } } - { {1} over { infinity } } } {}

Because 1 / = 0 size 12{ {1} slash { infinity =0} } {} , this simplifies to

1 d i = 1 f o , size 12{ { {1} over {d rSub { size 8{i} } } } = { {1} over {f rSub { size 8{o} } } } } {}

which implies that d i = f o , as claimed. It is true that for any distant object and any lens or mirror, the image is at the focal length.

The first image formed by a telescope objective as seen in [link] (b) will not be large compared with what you might see by looking at the object directly. For example, the spot formed by sunlight focused on a piece of paper by a magnifying glass is the image of the Sun, and it is small. The telescope eyepiece (like the microscope eyepiece) magnifies this first image. The distance between the eyepiece and the objective lens is made slightly less than the sum of their focal lengths so that the first image is closer to the eyepiece than its focal length. That is, d o is less than f e , and so the eyepiece forms a case 2 image that is large and to the left for easy viewing. If the angle subtended by an object as viewed by the unaided eye is θ , and the angle subtended by the telescope image is θ , then the angular magnification     M is defined to be their ratio. That is, M = θ / θ . It can be shown that the angular magnification of a telescope is related to the focal lengths of the objective and eyepiece; and is given by

M = θ θ = f o f e .

The minus sign indicates the image is inverted. To obtain the greatest angular magnification, it is best to have a long focal length objective and a short focal length eyepiece. The greater the angular magnification M size 12{M} {} , the larger an object will appear when viewed through a telescope, making more details visible. Limits to observable details are imposed by many factors, including lens quality and atmospheric disturbance.

Questions & Answers

Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
How we can toraidal magnetic field
Aditya Reply
How we can create polaidal magnetic field
Aditya
4
Mykayuh Reply
Because I'm writing a report and I would like to be really precise for the references
Gre Reply
where did you find the research and the first image (ECG and Blood pressure synchronized)? Thank you!!
Gre Reply
Practice Key Terms 2

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Physics 101. OpenStax CNX. Jan 07, 2013 Download for free at http://legacy.cnx.org/content/col11479/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics 101' conversation and receive update notifications?

Ask