<< Chapter < Page Chapter >> Page >
  • Determine the maximum speed of an oscillating system.

To study the energy of a simple harmonic oscillator, we first consider all the forms of energy it can have We know from Hooke’s Law: Stress and Strain Revisited that the energy stored in the deformation of a simple harmonic oscillator is a form of potential energy given by:

PE el = 1 2 kx 2 . size 12{"PE" size 8{"el"}= { {1} over {2} } ital "kx" rSup { size 8{2} } } {}

Because a simple harmonic oscillator has no dissipative forces, the other important form of energy is kinetic energy KE size 12{ ital "KE"} {} . Conservation of energy for these two forms is:

KE + PE el = constant size 12{ ital "KE"+ ital "PE" rSub { size 8{e1} } ="constant"} {}

or

1 2 mv 2 + 1 2 kx 2 = constant. size 12{ { {1} over {2} } ital "mv" rSup { size 8{2} } + { {1} over {2} } ital "kx" rSup { size 8{2} } ="constant"} {}

This statement of conservation of energy is valid for all simple harmonic oscillators, including ones where the gravitational force plays a role

Namely, for a simple pendulum we replace the velocity with v = size 12{v=Lω} {} , the spring constant with k = mg / L size 12{k= ital "mg"/L} {} , and the displacement term with x = size 12{x=Lθ} {} . Thus

1 2 mL 2 ω 2 + 1 2 mgL θ 2 = constant. size 12{ { {1} over {2} } ital "mL" rSup { size 8{2} } ω rSup { size 8{2} } + { {1} over {2} } ital "mgL"θ rSup { size 8{2} } ="constant"} {}

In the case of undamped simple harmonic motion, the energy oscillates back and forth between kinetic and potential, going completely from one to the other as the system oscillates. So for the simple example of an object on a frictionless surface attached to a spring, as shown again in [link] , the motion starts with all of the energy stored in the spring. As the object starts to move, the elastic potential energy is converted to kinetic energy, becoming entirely kinetic energy at the equilibrium position. It is then converted back into elastic potential energy by the spring, the velocity becomes zero when the kinetic energy is completely converted, and so on. This concept provides extra insight here and in later applications of simple harmonic motion, such as alternating current circuits.

Figure a shows a spring on a frictionless surface attached to a bar or wall from the left side, and on the right side of it there’s an object attached to it with mass m, its amplitude is given by X, and x equal to zero at the equilibrium level. Force F is applied to it from the right side, shown with left direction pointed red arrow and velocity v is equal to zero. A direction point showing the north and west direction is also given alongside this figure as well as with other four figures. The energy given here for the object is given according to the velocity. In figure b, after the force has been applied, the object moves to the left compressing the spring a bit, and the displaced area of the object from its initial point is shown in sketched dots. F is equal to zero and the V is max in negative direction. The energy given here for the object is given according to the velocity. In figure c, the spring has been compressed to the maximum level, and the amplitude is negative x. Now the direction of force changes to the rightward direction, shown with right direction pointed red arrow and the velocity v zero. The energy given here for the object is given according to the velocity.                In figure d, the spring is shown released from the compressed level and the object has moved toward the right side up to the equilibrium level. F is zero, and the velocity v is maximum. The energy given here for the object is given according to the velocity.               In figure e, the spring has been stretched loose to the maximum level and the object has moved to the far right. Now again the velocity here is equal to zero and the direction of force again is to the left hand side, shown here as F is equal to zero. The energy given here for the object is given according to the velocity.
The transformation of energy in simple harmonic motion is illustrated for an object attached to a spring on a frictionless surface.

The conservation of energy principle can be used to derive an expression for velocity v size 12{v} {} . If we start our simple harmonic motion with zero velocity and maximum displacement ( x = X size 12{x=X} {} ), then the total energy is

1 2 kX 2 . size 12{ { {1} over {2} } ital "kX" rSup { size 8{2} } } {}

This total energy is constant and is shifted back and forth between kinetic energy and potential energy, at most times being shared by each. The conservation of energy for this system in equation form is thus:

1 2 mv 2 + 1 2 kx 2 = 1 2 kX 2 . size 12{ { {1} over {2} } ital "mv" rSup { size 8{2} } + { {1} over {2} } ital "kx" rSup { size 8{2} } = { {1} over {2} } ital "kX" rSup { size 8{2} } } {}

Solving this equation for v size 12{v} {} yields:

v = ± k m X 2 x 2 . size 12{v= +- sqrt { { {k} over {m} } left (X rSup { size 8{2} } - x rSup { size 8{2} } right )} } {}

Manipulating this expression algebraically gives:

v = ± k m X 1 x 2 X 2 size 12{v= +- sqrt { { {k} over {m} } } X sqrt {1 - { {x rSup { size 8{2} } } over {X rSup { size 8{2} } } } } } {}

and so

v = ± v max 1 x 2 X 2 , size 12{v= +- v size 8{"max" sqrt {1 - { {x rSup { size 8{2} } } over {X rSup { size 8{2} } } } } }} {}

where

v max = k m X . size 12{v size 8{"max"}= sqrt { { {k} over {m} } } X} {}

From this expression, we see that the velocity is a maximum ( v max ) at x = 0 size 12{x=0} {} , as stated earlier in v t = v max sin t T . Notice that the maximum velocity depends on three factors. Maximum velocity is directly proportional to amplitude. As you might guess, the greater the maximum displacement the greater the maximum velocity. Maximum velocity is also greater for stiffer systems, because they exert greater force for the same displacement. This observation is seen in the expression for v max ; it is proportional to the square root of the force constant k . Finally, the maximum velocity is smaller for objects that have larger masses, because the maximum velocity is inversely proportional to the square root of m . For a given force, objects that have large masses accelerate more slowly.

Questions & Answers

Why is the sky blue...?
Star Reply
It's filtered light from the 2 forms of radiation emitted from the sun. It's mainly filtered UV rays. There's a theory titled Scatter Theory that covers this topic
Mike
A heating coil of resistance 30π is connected to a 240v supply for 5min to boil a quantity of water in a vessel of heat capacity 200jk. If the initial temperature of water is 20°c and it specific heat capacity is 4200jkgk calculate the mass of water in a vessel
fasawe Reply
A thin equi convex lens is placed on a horizontal plane mirror and a pin held 20 cm vertically above the lens concise in position with its own image the space between the undersurface of d lens and the mirror is filled with water (refractive index =1•33)and then to concise with d image d pin has to
Azummiri Reply
Be raised until its distance from d lens is 27cm find d radius of curvature
Azummiri
what happens when a nuclear bomb and atom bomb bomb explode add the same time near each other
FlAsH Reply
A monkey throws a coconut straight upwards from a coconut tree with a velocity of 10 ms-1. The coconut tree is 30 m high. Calculate the maximum height of the coconut from the top of the coconut tree? Can someone answer my question
Fatinizzah Reply
v2 =u2 - 2gh 02 =10x10 - 2x9.8xh h = 100 ÷ 19.6 answer = 30 - h.
Ramonyai
why is the north side is always referring to n side of magnetic
sam Reply
who is a nurse
Chilekwa Reply
A nurse is a person who takes care of the sick
Bukola
a nurse is also like an assistant to the doctor
Gadjawa
explain me wheatstone bridge
Malik Reply
good app
samuel
Wheatstone bridge is an instrument used to measure an unknown electrical resistance by balancing two legs of a bridge circuit, one leg of which includes the unknown component.
MUHD
Rockwell Software is Rockwell Automation’s "Retro Encabulator". Now, basically the only new principle involved is that instead of power being generated by the relative motion of conductors and fluxes, it’s produced by the modial interaction of magneto-reluctance and capacitive diractance. The origin
Chip
what refractive index
Adjah Reply
write a comprehensive note on primary colours
Harrison Reply
relationship between refractive index, angle of minimum deviation and angle of prism
Harrison
Who knows the formula for binding energy,and what each variable or notation stands for?
Agina Reply
1. A black thermocouple measures the temperature in the chamber with black walls.if the air around the thermocouple is 200 C,the walls are at 1000 C,and the heat transfer constant is 15.compute the temperature gradient
Tikiso Reply
what is the relationship between G and g
Olaiya Reply
G is the u. constant, as g stands for grav, accelerate at a discreet point
Mark
Is that all about it?
Olaiya
pls explain in details
Olaiya
G is a universal constant
Mark
g stands for the gravitational acceleration point. hope this helps you.
Mark
balloon TD is at a gravitational acceleration at a specific point
Mark
I'm sorry this doesn't take dictation very well.
Mark
Can anyone explain the Hooke's law of elasticity?
Olaiya Reply
extension of a spring is proportional to the force applied so long as the force applied does not exceed the springs capacity according to my textbook
Amber
does this help?
Amber
Yes, thanks
Olaiya
so any solid can be compressed how compressed is dependent upon how much force is applied F=deltaL
Amber
sorry, the equation is F=KdeltaL delta is the triangle symbol and L is length so the change in length is proportional to amount of Force applied I believe that is what Hookes law means. anyone catch any mistakes here please correct me :)
Amber
I think it is used only for solids and not liquids, isn't it?
Olaiya
basically as long as you dont exceed the elastic limit the object should return to it original form but if you exceed this limit the object will not return to original shape as it will break
Amber
Thanks for the explanation
Olaiya
yh, liquids don't apply here, that should be viscosity
Chiamaka
hope it helps 😅
Amber
also, an object doesnt have to break necessarily, but it will have a new form :)
Amber
Yes
Olaiya
yeah, I think it is for solids but maybe there is a variation for liquids? that I am not sure of
Amber
ok
Olaiya
good luck!
Amber
Same
Olaiya
aplease i need a help on spcific latent heat of vibrations
Bilgate
specific latent heat of vaporisation
Bilgate
how many kilometers makes a mile
Margaret Reply
about 1.6 kilometres.
Faizyab
near about 1.67 kilometers
Aakash
equal to 1.609344 kilometers.
MUHD

Get the best College physics course in your pocket!





Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask