<< Chapter < Page Chapter >> Page >

Lowest bidder

A manufacturer seeks bids on a modification of one of his processing units. Twenty contractors are invited to bid. They bid with probability 0.3, so that the numberof bids N binomial (20,0.3). Assume the bids Y i (in thousands of dollars) form an iid class. The market is such that the bids have a common distributionsymmetric triangular on (150,250). What is the probability of at least one bid no greater than 170, 180, 190, 200, 210? Note that no bid is not a low bid of zero, hence we must use the special case.

Solution

P ( V t ) = 1 - g N [ P ( Y > t ) ] = 1 - ( 0 . 7 + 0 . 3 p ) 20 where p = P ( Y > t )

Solving graphically for p = P ( V > t ) , we get

p = [ 23 / 25 41 / 50 17 / 25 1 / 2 8 / 25 ] for t = [ 170 180 190 200 210 ]

Now g N ( s ) = ( 0 . 7 + 0 . 3 s ) 20 . We use MATLAB to obtain

t = [170 180 190 200 210];p = [23/25 41/50 17/25 1/2 8/25];PV = 1 - (0.7 + 0.3*p).^20; disp([t;p;PV]') 170.0000 0.9200 0.3848180.0000 0.8200 0.6705 190.0000 0.6800 0.8671200.0000 0.5000 0.9612 210.0000 0.3200 0.9896
Got questions? Get instant answers now!

[link] With a general counting variable

Suppose the number of bids is 1, 2 or 3 with probabilities 0.3, 0.5, 0.2, respectively.

Determine P ( V t ) in each case.

SOLUTION.

The minimum of the selected Y ' s is no greater than t if and only if there is at least one Y less than or equal to t . We determine in each case probabilities for the number of bids satisfying Y t . For each t , we are interested in the probability of one or more occurrences of the event Y t . This is essentially the problem in Example 7 from "Random Selection", with probability p = P ( Y t ) .

t = [170 180 190 200 210];p = [23/25 41/50 17/25 1/2 8/25]; % Probabilities Y<= t are 1 - p gN = [0 0.3 0.5 0.2]; % Zero for missing value PV = zeros(1,length(t));for i=1:length(t) gY = [p(i),1 - p(i)]; [d,pd]= gendf(gN,gY); PV(i) = (d>0)*pd'; % Selects positions for d>0 and end % adds corresponding probabilitiesdisp([t;PV]')170.0000 0.1451 180.0000 0.3075190.0000 0.5019 200.0000 0.7000210.0000 0.8462

[link] may be worked in this manner by using gN = ibinom(20,0.3,0:20) . The results, of course, are the same as in the previous solution. The fact that the probabilities in this example are lower for each t than in [link] reflects the fact that there are probably fewer bids in each case.

Got questions? Get instant answers now!

Batch testing

Electrical units from a production line are first inspected for operability. However, experience indicates that a fraction p of those passing the initial operability test are defective. All operable units are subsequenly tested in a batch under continuousoperation ( a “burn in” test). Statistical data indicate the defective units have times to failure Y i iid, exponential ( λ ) , whereas good units have very long life (infinite from the point of view of the test). A batch of n units is tested. Let V be the time of the first failure and N be the number of defective units in the batch. If the test goes t units of time with no failure (i.e., V > t ), what is the probability of no defective units?

SOLUTION

Since no defective units implies no failures in any reasonable test time, we have

{ N = 0 } { V > t } so that P ( N = 0 | V > t ) = P ( N = 0 ) P ( V > t )

Since N = 0 does not yield a minimum value, we have P ( V > t ) = g N [ P ( Y > t ) ] . Now under the condition above, the number of defective units N binomial ( n , p ) , so that g N ( s ) = ( q + p s ) n . If N is large and p is reasonably small, N is approximately Poisson ( n p ) with g N ( s ) = e n p ( s - 1 ) and P ( N = 0 ) = e - n p . Now P ( Y > t ) = e - λ t ; for large n

P ( N = 0 | V > t ) = e - n p e n p [ P ( Y > t ) - 1 ] = e - n p P ( Y > t ) = e - n p e - λ t

For n = 5000 , p = 0 . 001 , λ = 2 , and t = 1 , 2 , 3 , 4 , 5 , MATLAB calculations give

t = 1:5; n = 5000;p = 0.001; lambda = 2;P = exp(-n*p*exp(-lambda*t)); disp([t;P]') 1.0000 0.50832.0000 0.9125 3.0000 0.98774.0000 0.9983 5.0000 0.9998

It appears that a test of three to five hours should give reliable results. In actually designing the test, one should probably make calculations with a number of differentassumptions on the fraction of defective units and the life duration of defective units. These calculations are relatively easy to make with MATLAB.

Got questions? Get instant answers now!

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Applied probability. OpenStax CNX. Aug 31, 2009 Download for free at http://cnx.org/content/col10708/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Applied probability' conversation and receive update notifications?

Ask