<< Chapter < Page Chapter >> Page >

Different insights can be gained from the three different expressions for electric power. For example, P = V 2 / R size 12{P = V rSup { size 8{2} } /R} {} implies that the lower the resistance connected to a given voltage source, the greater the power delivered. Furthermore, since voltage is squared in P = V 2 / R size 12{P = V rSup { size 8{2} } /R} {} , the effect of applying a higher voltage is perhaps greater than expected. Thus, when the voltage is doubled to a 25-W bulb, its power nearly quadruples to about 100 W, burning it out. If the bulb’s resistance remained constant, its power would be exactly 100 W, but at the higher temperature its resistance is higher, too.

Calculating power dissipation and current: hot and cold power

(a) Consider the examples given in Ohm’s Law: Resistance and Simple Circuits and Resistance and Resistivity . Then find the power dissipated by the car headlight in these examples, both when it is hot and when it is cold. (b) What current does it draw when cold?

Strategy for (a)

For the hot headlight, we know voltage and current, so we can use P = IV size 12{P = ital "IV"} {} to find the power. For the cold headlight, we know the voltage and resistance, so we can use P = V 2 / R size 12{P = V rSup { size 8{2} } /R} {} to find the power.

Solution for (a)

Entering the known values of current and voltage for the hot headlight, we obtain

P = IV = ( 2 . 50 A ) ( 12 . 0 V ) = 30 . 0 W. size 12{P = ital "IV" = \( 2 "." "50 A" \) \( "12" "." "0 V" \) =" 30" "." "0 W."} {}

The cold resistance was 0 . 350 Ω size 12{0 "." "350" %OMEGA } {} , and so the power it uses when first switched on is

P = V 2 R = ( 12 . 0 V ) 2 0 . 350 Ω = 411 W. size 12{P = { {V rSup { size 8{2} } } over {R} } = { { \( "12" "." "0 V" \) rSup { size 8{2} } } over {0 "." "350" %OMEGA } } =" 411 W."} {}

Discussion for (a)

The 30 W dissipated by the hot headlight is typical. But the 411 W when cold is surprisingly higher. The initial power quickly decreases as the bulb’s temperature increases and its resistance increases.

Strategy and Solution for (b)

The current when the bulb is cold can be found several different ways. We rearrange one of the power equations, P = I 2 R size 12{P = I rSup { size 8{2} } R} {} , and enter known values, obtaining

I = P R = 411 W 0 . 350 Ω = 34 . 3 A. size 12{I = sqrt { { {P} over {R} } } = sqrt { { {"411 W"} over {0 "." "350 " %OMEGA } } } =" 34" "." "3 A."} {}

Discussion for (b)

The cold current is remarkably higher than the steady-state value of 2.50 A, but the current will quickly decline to that value as the bulb’s temperature increases. Most fuses and circuit breakers (used to limit the current in a circuit) are designed to tolerate very high currents briefly as a device comes on. In some cases, such as with electric motors, the current remains high for several seconds, necessitating special “slow blow” fuses.

The cost of electricity

The more electric appliances you use and the longer they are left on, the higher your electric bill. This familiar fact is based on the relationship between energy and power. You pay for the energy used. Since P = E / t size 12{P=E/t} {} , we see that

E = Pt size 12{E = ital "Pt"} {}

is the energy used by a device using power P size 12{P} {} for a time interval t size 12{t} {} . For example, the more lightbulbs burning, the greater P size 12{P} {} used; the longer they are on, the greater t size 12{t} {} is. The energy unit on electric bills is the kilowatt-hour ( kW h size 12{"kw" cdot h} {} ), consistent with the relationship E = Pt size 12{E = ital "Pt"} {} . It is easy to estimate the cost of operating electric appliances if you have some idea of their power consumption rate in watts or kilowatts, the time they are on in hours, and the cost per kilowatt-hour for your electric utility. Kilowatt-hours, like all other specialized energy units such as food calories, can be converted to joules. You can prove to yourself that 1 kW h = 3 . 6 × 10 6 J size 12{1"kW" cdot "h = 3" "." 6´"10" rSup { size 8{6} } " J"} {} .

Questions & Answers

where we get a research paper on Nano chemistry....?
Maira Reply
what are the products of Nano chemistry?
Maira Reply
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
Google
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
Hafiz Reply
revolt
da
Application of nanotechnology in medicine
what is variations in raman spectra for nanomaterials
Jyoti Reply
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
LITNING Reply
what is a peer
LITNING Reply
What is meant by 'nano scale'?
LITNING Reply
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
How we can toraidal magnetic field
Aditya Reply
How we can create polaidal magnetic field
Aditya
4
Mykayuh Reply
Because I'm writing a report and I would like to be really precise for the references
Gre Reply
where did you find the research and the first image (ECG and Blood pressure synchronized)? Thank you!!
Gre Reply
Practice Key Terms 1

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Physics 101. OpenStax CNX. Jan 07, 2013 Download for free at http://legacy.cnx.org/content/col11479/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics 101' conversation and receive update notifications?

Ask