# 14.3 Resistance and resistivity  (Page 2/6)

 Page 2 / 6

## Calculating resistor diameter: a headlight filament

A car headlight filament is made of tungsten and has a cold resistance of $0\text{.}\text{350}\phantom{\rule{0.25em}{0ex}}\Omega$ . If the filament is a cylinder 4.00 cm long (it may be coiled to save space), what is its diameter?

Strategy

We can rearrange the equation $R=\frac{\mathrm{\rho L}}{A}$ to find the cross-sectional area $A$ of the filament from the given information. Then its diameter can be found by assuming it has a circular cross-section.

Solution

The cross-sectional area, found by rearranging the expression for the resistance of a cylinder given in $R=\frac{\mathrm{\rho L}}{A}$ , is

$A=\frac{\mathrm{\rho L}}{R}\text{.}$

Substituting the given values, and taking $\rho$ from [link] , yields

$\begin{array}{lll}A& =& \frac{\left(5.6×{\text{10}}^{–8}\phantom{\rule{0.25em}{0ex}}\Omega \cdot \text{m}\right)\left(4.00×{\text{10}}^{–2}\phantom{\rule{0.25em}{0ex}}\text{m}\right)}{\text{0.350}\phantom{\rule{0.25em}{0ex}}\Omega }\\ & =& \text{6.40}×{\text{10}}^{–9}\phantom{\rule{0.25em}{0ex}}{\text{m}}^{2}\text{.}\end{array}$

The area of a circle is related to its diameter $D$ by

$A=\frac{{\mathrm{\pi D}}^{2}}{4}\text{.}$

Solving for the diameter $D$ , and substituting the value found for $A$ , gives

$\begin{array}{lll}D& =& \text{2}{\left(\frac{A}{p}\right)}^{\frac{1}{2}}=\text{2}{\left(\frac{6.40×{\text{10}}^{–9}\phantom{\rule{0.25em}{0ex}}{\text{m}}^{2}}{3.14}\right)}^{\frac{1}{2}}\\ & =& 9.0×{\text{10}}^{–5}\phantom{\rule{0.25em}{0ex}}\text{m}\text{.}\end{array}$

Discussion

The diameter is just under a tenth of a millimeter. It is quoted to only two digits, because $\rho$ is known to only two digits.

## Temperature variation of resistance

The resistivity of all materials depends on temperature. Some even become superconductors (zero resistivity) at very low temperatures. (See [link] .) Conversely, the resistivity of conductors increases with increasing temperature. Since the atoms vibrate more rapidly and over larger distances at higher temperatures, the electrons moving through a metal make more collisions, effectively making the resistivity higher. Over relatively small temperature changes (about $\text{100º}\text{C}$ or less), resistivity $\rho$ varies with temperature change $\Delta T$ as expressed in the following equation

$\rho ={\rho }_{0}\left(\text{1}+\alpha \Delta T\right)\text{,}$

where ${\rho }_{0}$ is the original resistivity and $\alpha$ is the temperature coefficient of resistivity    . (See the values of $\alpha$ in [link] below.) For larger temperature changes, $\alpha$ may vary or a nonlinear equation may be needed to find $\rho$ . Note that $\alpha$ is positive for metals, meaning their resistivity increases with temperature. Some alloys have been developed specifically to have a small temperature dependence. Manganin (which is made of copper, manganese and nickel), for example, has $\alpha$ close to zero (to three digits on the scale in [link] ), and so its resistivity varies only slightly with temperature. This is useful for making a temperature-independent resistance standard, for example.

Tempature coefficients of resistivity $\alpha$
Material Coefficient $\alpha$ (1/°C) Values at 20°C.
Conductors
Silver $3\text{.}8×{\text{10}}^{-3}$
Copper $3\text{.}9×{\text{10}}^{-3}$
Gold $3\text{.}4×{\text{10}}^{-3}$
Aluminum $3\text{.}9×{\text{10}}^{-3}$
Tungsten $4\text{.}5×{\text{10}}^{-3}$
Iron $5\text{.}0×{\text{10}}^{-3}$
Platinum $3\text{.}\text{93}×{\text{10}}^{-3}$
Lead $3\text{.}9×{\text{10}}^{-3}$
Manganin (Cu, Mn, Ni alloy) $0\text{.}\text{000}×{\text{10}}^{-3}$
Constantan (Cu, Ni alloy) $0\text{.}\text{002}×{\text{10}}^{-3}$
Mercury $0\text{.}\text{89}×{\text{10}}^{-3}$
Nichrome (Ni, Fe, Cr alloy) $0\text{.}4×{\text{10}}^{-3}$
Semiconductors
Carbon (pure) $-0\text{.}5×{\text{10}}^{-3}$
Germanium (pure) $-\text{50}×{\text{10}}^{-3}$
Silicon (pure) $-\text{70}×{\text{10}}^{-3}$

Note also that $\alpha$ is negative for the semiconductors listed in [link] , meaning that their resistivity decreases with increasing temperature. They become better conductors at higher temperature, because increased thermal agitation increases the number of free charges available to carry current. This property of decreasing $\rho$ with temperature is also related to the type and amount of impurities present in the semiconductors.

what is the stm
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
why we need to study biomolecules, molecular biology in nanotechnology?
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
why?
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
what does nano mean?
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
Abigail
for teaching engĺish at school how nano technology help us
Anassong
How can I make nanorobot?
Lily
Do somebody tell me a best nano engineering book for beginners?
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
how can I make nanorobot?
Lily
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
How we can toraidal magnetic field
How we can create polaidal magnetic field
4
Because I'm writing a report and I would like to be really precise for the references
where did you find the research and the first image (ECG and Blood pressure synchronized)? Thank you!!