<< Chapter < Page Chapter >> Page >
The figure describes the propagation of an action potential, or voltage pulse, along a cell membrane. The cell membrane, represented by a horizontal, blue strip, is shown in five stages, with the electrical signal moving along its length from left to right. Initially, the membrane is in the resting state, with a uniform distribution of positive charges along the outer surface and negative charges along the inner surface. A sodium cation is shown outside the cell, and a potassium cation is shown inside the cell. A small part of the membrane near the left end receives a stimulus, making that part permeable to sodium ions. In the second stage, sodium ions cross the membrane in that area, represented by a white opening in the membrane. The charge distribution in that section of the membrane is reversed; this process is called depolarization. At the same time, an adjacent part of the membrane is stimulated. In the third stage, the depolarized area undergoes repolarization, with potassium ions crossing the membrane from inside to outside the cell. Repolarization is represented by a box containing tiny triangles. At the same time, sodium ions enter the cell through the adjacent area that was stimulated in the second stage. As the cycle is repeated, the electrical signal moves along the membrane, from left to right.
A nerve impulse is the propagation of an action potential along a cell membrane. A stimulus causes an action potential at one location, which changes the permeability of the adjacent membrane, causing an action potential there. This in turn affects the membrane further down, so that the action potential moves slowly (in electrical terms) along the cell membrane. Although the impulse is due to Na + size 12{"Na" rSup { size 8{+{}} } } {} and K + size 12{"K" rSup { size 8{+{}} } } {} going across the membrane, it is equivalent to a wave of charge moving along the outside and inside of the membrane.

Some axons, like that in [link] , are sheathed with myelin , consisting of fat-containing cells. [link] shows an enlarged view of an axon having myelin sheaths characteristically separated by unmyelinated gaps (called nodes of Ranvier). This arrangement gives the axon a number of interesting properties. Since myelin is an insulator, it prevents signals from jumping between adjacent nerves (cross talk). Additionally, the myelinated regions transmit electrical signals at a very high speed, as an ordinary conductor or resistor would. There is no action potential in the myelinated regions, so that no cell energy is used in them. There is an IR size 12{ ital "IR"} {} signal loss in the myelin, but the signal is regenerated in the gaps, where the voltage pulse triggers the action potential at full voltage. So a myelinated axon transmits a nerve impulse faster, with less energy consumption, and is better protected from cross talk than an unmyelinated one. Not all axons are myelinated, so that cross talk and slow signal transmission are a characteristic of the normal operation of these axons, another variable in the nervous system.

The degeneration or destruction of the myelin sheaths that surround the nerve fibers impairs signal transmission and can lead to numerous neurological effects. One of the most prominent of these diseases comes from the body’s own immune system attacking the myelin in the central nervous system—multiple sclerosis. MS symptoms include fatigue, vision problems, weakness of arms and legs, loss of balance, and tingling or numbness in one’s extremities (neuropathy). It is more apt to strike younger adults, especially females. Causes might come from infection, environmental or geographic affects, or genetics. At the moment there is no known cure for MS.

Most animal cells can fire or create their own action potential. Muscle cells contract when they fire and are often induced to do so by a nerve impulse. In fact, nerve and muscle cells are physiologically similar, and there are even hybrid cells, such as in the heart, that have characteristics of both nerves and muscles. Some animals, like the infamous electric eel (see [link] ), use muscles ganged so that their voltages add in order to create a shock great enough to stun prey.

The figure describes the propagation of a nerve impulse, or voltage pulse, down a myelinated axon, from left to right. A cross-section of the axon is shown as a long, horizontally oriented rectangular strip, with a membrane on each side. The axon is covered with myelin sheaths separated by gaps known as nodes of Ranvier. Three gaps are shown. Most of the inner surface of the membrane is negatively charged, and the outer surface is positively charged. The gap on the left is labeled as depolarized, where the charge distribution along the membrane surface is reversed. As the voltage pulse moves from left to right through the first myelinated region, it loses voltage. The gap in the middle, labeled as depolarizing, shows sodium cations crossing the membrane from the outside to the inside of the axon. This regenerates the voltage pulse, which continues to move along the axon. The third gap is labeled as still polarized, because the signal has yet to reach that gap.
Propagation of a nerve impulse down a myelinated axon, from left to right. The signal travels very fast and without energy input in the myelinated regions, but it loses voltage. It is regenerated in the gaps. The signal moves faster than in unmyelinated axons and is insulated from signals in other nerves, limiting cross talk.

Questions & Answers

where we get a research paper on Nano chemistry....?
Maira Reply
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
Ali
what are the products of Nano chemistry?
Maira Reply
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
Google
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
Hafiz Reply
revolt
da
Application of nanotechnology in medicine
what is variations in raman spectra for nanomaterials
Jyoti Reply
ya I also want to know the raman spectra
Bhagvanji
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
LITNING Reply
what is a peer
LITNING Reply
What is meant by 'nano scale'?
LITNING Reply
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
How we can toraidal magnetic field
Aditya Reply
How we can create polaidal magnetic field
Aditya
4
Mykayuh Reply
Because I'm writing a report and I would like to be really precise for the references
Gre Reply
where did you find the research and the first image (ECG and Blood pressure synchronized)? Thank you!!
Gre Reply
Practice Key Terms 4

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Physics 101. OpenStax CNX. Jan 07, 2013 Download for free at http://legacy.cnx.org/content/col11479/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics 101' conversation and receive update notifications?

Ask