<< Chapter < Page Chapter >> Page >
The diagram shows a diagram of a heat pump. There are four components connected by pipes. They are a condenser (1), an expansion valve (2), an evaporator (3), and a compressor (4), connected in that order. The evaporator coils are outside; all of the other components are inside. Heat Q sub c is absorbed from the outside air at the evaporator, and heat Q sub h is emitted inside from the condenser.
A simple heat pump has four basic components: (1) condenser, (2) expansion valve, (3) evaporator, and (4) compressor. In the heating mode, heat transfer Q c size 12{Q rSub { size 8{c} } } {} occurs to the working fluid in the evaporator (3) from the colder outdoor air, turning it into a gas. The electrically driven compressor (4) increases the temperature and pressure of the gas and forces it into the condenser coils (1) inside the heated space. Because the temperature of the gas is higher than the temperature in the room, heat transfer from the gas to the room occurs as the gas condenses to a liquid. The working fluid is then cooled as it flows back through an expansion valve (2) to the outdoor evaporator coils.

The electrically driven compressor (work input W size 12{W} {} ) raises the temperature and pressure of the gas and forces it into the condenser coils that are inside the heated space. Because the temperature of the gas is higher than the temperature inside the room, heat transfer to the room occurs and the gas condenses to a liquid. The liquid then flows back through a pressure-reducing valve to the outdoor evaporator coils, being cooled through expansion. (In a cooling cycle, the evaporator and condenser coils exchange roles and the flow direction of the fluid is reversed.)

The quality of a heat pump is judged by how much heat transfer Q h size 12{Q rSub { size 8{h} } } {} occurs into the warm space compared with how much work input W size 12{W} {} is required. In the spirit of taking the ratio of what you get to what you spend, we define a heat pump’s coefficient of performance ( COP hp size 12{ ital "COP" rSub { size 8{"hp"} } } {} ) to be

COP hp = Q h W . size 12{ ital "COP" rSub { size 8{"hp"} } = { {Q rSub { size 8{h} } } over {W} } } {}

Since the efficiency of a heat engine is Eff = W / Q h size 12{ ital "Eff"=W/Q rSub { size 8{h} } } {} , we see that COP hp = 1 / Eff size 12{ ital "COP" rSub { size 8{"hp"} } =1/ ital "Eff"} {} , an important and interesting fact. First, since the efficiency of any heat engine is less than 1, it means that COP hp size 12{ ital "COP" rSub { size 8{"hp"} } } {} is always greater than 1—that is, a heat pump always has more heat transfer Q h size 12{Q rSub { size 8{h} } } {} than work put into it. Second, it means that heat pumps work best when temperature differences are small. The efficiency of a perfect, or Carnot, engine is Eff C = 1 T c / T h size 12{ ital "Eff" rSub { size 8{C} } =1 - left (T rSub { size 8{c} } /T rSub { size 8{h} } right )} {} ; thus, the smaller the temperature difference, the smaller the efficiency and the greater the COP hp size 12{ ital "COP" rSub { size 8{"hp"} } } {} (because COP hp = 1 / Eff size 12{ ital "COP" rSub { size 8{"hp"} } =1/ ital "Eff"} {} ). In other words, heat pumps do not work as well in very cold climates as they do in more moderate climates.

Friction and other irreversible processes reduce heat engine efficiency, but they do not benefit the operation of a heat pump—instead, they reduce the work input by converting part of it to heat transfer back into the cold reservoir before it gets into the heat pump.

A diagram of a heat pump (shown as a circle). Work W, indicated by a large, wavy orange arrow, is the total work put into the pump. Part of this work is done against friction and is lost in the form of frictional heat, Q sub f, to the cold reservoir. The portion of work that is used by the heat pump is represented by W prime. The pump transfers heat Q sub h, indicated by a large orange arrow, into the hot reservoir, a tan-colored rectangle, at temperature T sub h. Frictional heat Q sub f, indicated by a wavy orange arrow, is transferred to the cold reservoir, a blue rectangle at temperature T sub c. Heat Q sub c, indicated by a smaller wavy orange arrow, is transferred into the pump from the cold reservoir. Heat Q sub h is formed from a combination of W prime and Q sub c.
When a real heat engine is run backward, some of the intended work input W { left (W right )} {} goes into heat transfer before it gets into the heat engine, thereby reducing its coefficient of performance COP hp size 12{ ital "COP" rSub { size 8{"hp"} } } {} . In this figure, W ' {W'} {} represents the portion of W {W} {} that goes into the heat pump, while the remainder of W {W} {} is lost in the form of frictional heat Q f { left (Q rSub { {f} } right )} {} to the cold reservoir. If all of W size 12{W} {} had gone into the heat pump, then Q h size 12{Q rSub { size 8{h} } } {} would have been greater. The best heat pump uses adiabatic and isothermal processes, since, in theory, there would be no dissipative processes to reduce the heat transfer to the hot reservoir.

Questions & Answers

what is Nano technology ?
Bob Reply
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, College physics: physics of california. OpenStax CNX. Sep 30, 2013 Download for free at http://legacy.cnx.org/content/col11577/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics: physics of california' conversation and receive update notifications?

Ask