<< Chapter < Page Chapter >> Page >
This module provides the assumptions to be considered in order to calculate a Test of Two Variances and how to execute the Test of Two Variances. An example is provided to help clarify the concept.

Another of the uses of the F distribution is testing two variances. It is often desirable to compare two variances rather than two averages. For instance, collegeadministrators would like two college professors grading exams to have the same variation in their grading. In order for a lid to fit a container, the variation in the lidand the container should be the same. A supermarket might be interested in the variability of check-out times for two checkers.

In order to perform a F test of two variances, it is important that the following are true:

  1. The populations from which the two samples are drawn are normally distributed.
  2. The two populations are independent of each other.

Suppose we sample randomly from two independent normal populations. Let σ 1 2 and σ 2 2 be the population variances and s 1 2 and s 2 2 be the sample variances. Let the sample sizes be n 1 and n 2 . Since we are interested in comparing the two sample variances, we use the F ratio

F = [ ( s 1 ) 2 ( σ 1 ) 2 ] [ ( s 2 ) 2 ( σ 2 ) 2 ]

F has the distribution F ~ F ( n 1 - 1 , n 2 - 1 )

where n 1 - 1 are the degrees of freedom for the numerator and n 2 - 1 are the degrees of freedom for the denominator.

If the null hypothesis is σ 1 2 = σ 2 2 , then the F-Ratio becomes F = [ ( s 1 ) 2 ( σ 1 ) 2 ] [ ( s 2 ) 2 ( σ 2 ) 2 ] = ( s 1 ) 2 ( s 2 ) 2 .

The F ratio could also be ( s 2 ) 2 ( s 1 ) 2 . It depends on H a and on which sample variance is larger.

If the two populations have equal variances, then s 1 2 and s 2 2 are close in value and F = ( s 1 ) 2 ( s 2 ) 2 is close to 1 . But if the two population variances are very different, s 1 2 and s 2 2 tend to be very different, too.Choosing s 1 2 as the larger sample variance causes the ratio ( s 1 ) 2 ( s 2 ) 2 to be greater than 1 . If s 1 2 and s 2 2 are far apart, then F = ( s 1 ) 2 ( s 2 ) 2 is a large number.

Therefore, if F is close to 1 , the evidence favors the null hypothesis (the two population variances are equal). But if F is much larger than 1 , then the evidence is against the null hypothesis.

A test of two variances may be left, right, or two-tailed.

Two college instructors are interested in whether or not there is any variation in the way they grade math exams. They each grade the same set of 30exams. The first instructor's grades have a variance of 52.3. The second instructor's grades have a variance of 89.9.

Test the claim that the first instructor's variance is smaller. (In most colleges, it is desirable for the variances of exam grades to be nearlythe same among instructors.) The level of significance is 10%.

Let 1 and 2 be the subscripts that indicate the first and second instructor, respectively.

n 1 = n 2 = 30 .

H o : σ 1 2 = σ 2 2 and H a : σ 1 2 σ 2 2

Calculate the test statistic: By the null hypothesis ( σ 1 2 = σ 2 2 ) , the F statistic is

F = [ ( s 1 ) 2 ( σ 1 ) 2 ] [ ( s 2 ) 2 ( σ 2 ) 2 ] = ( s 1 ) 2 ( s 2 ) 2 = 52.3 89.9 = 0.5818

Distribution for the test: F 29 , 29 where n 1 - 1 = 29 and n 2 - 1 = 29 .

Graph: This test is left tailed.

Draw the graph labeling and shading appropriately.

Probability statement: p-value = P ( F 0.5818 ) = 0.0753

Compare α and the p-value: α = 0.10 α > p-value .

Make a decision: Since α > p-value , reject H o .

Conclusion: With a 10% level of significance, from the data, there is sufficient evidence to conclude that the variance in grades for the first instructor is smaller.

TI-83+ and TI-84: Press STAT and arrow over to TESTS . Arrow down to D:2-SampFTest . Press ENTER . Arrow to Stats and press ENTER . For Sx1 , n1 , Sx2 , and n2 , enter ( 52.3 ) , 30 , ( 89.9 ) , and 30 . Press ENTER after each. Arrow to σ1: and σ2 . Press ENTER . Arrow down to Calculate and press ENTER . F = 0.5818 and p-value = 0.0753 . Do the procedure again and try Draw instead of Calculate .

Questions & Answers

Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
what school?
biomolecules are e building blocks of every organics and inorganic materials.
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
sciencedirect big data base
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
characteristics of micro business
for teaching engĺish at school how nano technology help us
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
what is the actual application of fullerenes nowadays?
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
is Bucky paper clear?
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Do you know which machine is used to that process?
how to fabricate graphene ink ?
for screen printed electrodes ?
What is lattice structure?
s. Reply
of graphene you mean?
or in general
in general
Graphene has a hexagonal structure
On having this app for quite a bit time, Haven't realised there's a chat room in it.
what is biological synthesis of nanoparticles
Sanket Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Collaborative statistics: custom version modified by r. bloom. OpenStax CNX. Nov 15, 2010 Download for free at http://legacy.cnx.org/content/col10617/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Collaborative statistics: custom version modified by r. bloom' conversation and receive update notifications?