# 13.2 The first law of thermodynamics and some simple processes  (Page 3/12)

 Page 3 / 12

## Total work done in a cyclical process equals the area inside the closed loop on a PV Diagram

Calculate the total work done in the cyclical process ABCDA shown in [link] (b) by the following two methods to verify that work equals the area inside the closed loop on the $\text{PV}$ diagram. (Take the data in the figure to be precise to three significant figures.) (a) Calculate the work done along each segment of the path and add these values to get the total work. (b) Calculate the area inside the rectangle ABCDA.

Strategy

To find the work along any path on a $\text{PV}$ diagram, you use the fact that work is pressure times change in volume, or $W=P\Delta V$ . So in part (a), this value is calculated for each leg of the path around the closed loop.

Solution for (a)

The work along path AB is

$\begin{array}{lll}{W}_{\text{AB}}& =& {P}_{\text{AB}}\Delta {V}_{\text{AB}}\\ & =& \left(1\text{.}\text{50}×{\text{10}}^{6}\phantom{\rule{0.25em}{0ex}}{\text{N/m}}^{2}\right)\left(5\text{.}\text{00}×{\text{10}}^{–4}\phantom{\rule{0.25em}{0ex}}{\text{m}}^{3}\right)=\text{750}\phantom{\rule{0.25em}{0ex}}\text{J.}\end{array}$

Since the path BC is isochoric, $\Delta {V}_{\text{BC}}=0$ , and so ${W}_{\text{BC}}=0$ . The work along path CD is negative, since $\Delta {V}_{\text{CD}}$ is negative (the volume decreases). The work is

$\begin{array}{lll}{W}_{\text{CD}}& =& {P}_{\text{CD}}\Delta {V}_{\text{CD}}\\ & =& \left(2\text{.}\text{00}×{\text{10}}^{5}\phantom{\rule{0.25em}{0ex}}{\text{N/m}}^{2}\right)\left(–5\text{.}\text{00}×{\text{10}}^{–4}\phantom{\rule{0.25em}{0ex}}{\text{m}}^{3}\right)\phantom{\rule{0.25em}{0ex}}\text{=}\phantom{\rule{0.25em}{0ex}}\text{–}\text{100}\phantom{\rule{0.25em}{0ex}}\text{J}\text{.}\end{array}$

Again, since the path DA is isochoric, $\Delta {V}_{\text{DA}}=0$ , and so ${W}_{\text{DA}}=0$ . Now the total work is

$\begin{array}{lll}W& =& {W}_{\text{AB}}+{W}_{\text{BC}}+{W}_{\text{CD}}+{W}_{\text{DA}}\\ & =& \text{750 J}+0+\left(-\text{100}\text{J}\right)+0=\text{650 J.}\end{array}$

Solution for (b)

The area inside the rectangle is its height times its width, or

$\begin{array}{lll}\text{area}& =& \left({P}_{\text{AB}}-{P}_{\text{CD}}\right)\Delta V\\ & =& \left[\left(\text{1.50}×{\text{10}}^{6}\phantom{\rule{0.25em}{0ex}}{\text{N/m}}^{2}\right)-\left(2\text{.}\text{00}×{\text{10}}^{5}\phantom{\rule{0.25em}{0ex}}{\text{N/m}}^{2}\right)\right]\left(5\text{.}\text{00}×{\text{10}}^{-4}\phantom{\rule{0.25em}{0ex}}{\text{m}}^{3}\right)\\ & =& \text{650 J.}\end{array}$

Thus,

$\text{area}=\text{650}\phantom{\rule{0.25em}{0ex}}\text{J}=W\text{.}$

Discussion

The result, as anticipated, is that the area inside the closed loop equals the work done. The area is often easier to calculate than is the work done along each path. It is also convenient to visualize the area inside different curves on $\text{PV}$ diagrams in order to see which processes might produce the most work. Recall that work can be done to the system, or by the system, depending on the sign of $W$ . A positive $W$ is work that is done by the system on the outside environment; a negative $W$ represents work done by the environment on the system.

[link] (a) shows two other important processes on a $\text{PV}$ diagram. For comparison, both are shown starting from the same point A. The upper curve ending at point B is an isothermal process—that is, one in which temperature is kept constant. If the gas behaves like an ideal gas, as is often the case, and if no phase change occurs, then $\text{PV}=\text{nRT}$ . Since $T$ is constant, $\text{PV}$ is a constant for an isothermal process. We ordinarily expect the temperature of a gas to decrease as it expands, and so we correctly suspect that heat transfer must occur from the surroundings to the gas to keep the temperature constant during an isothermal expansion. To show this more rigorously for the special case of a monatomic ideal gas, we note that the average kinetic energy of an atom in such a gas is given by

Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
why we need to study biomolecules, molecular biology in nanotechnology?
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
why?
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
what does nano mean?
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
for screen printed electrodes ?
SUYASH
What is lattice structure?
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Got questions? Join the online conversation and get instant answers!