<< Chapter < Page Chapter >> Page >

The first law of thermodynamics and the conservation of energy, as discussed in Conservation of Energy , are clearly related. How do they differ in the types of energy considered?

Heat transfer Q size 12{Q} {} and work done W size 12{W} {} are always energy in transit, whereas internal energy U size 12{U} {} is energy stored in a system. Give an example of each type of energy, and state specifically how it is either in transit or resides in a system.

How do heat transfer and internal energy differ? In particular, which can be stored as such in a system and which cannot?

If you run down some stairs and stop, what happens to your kinetic energy and your initial gravitational potential energy?

Give an explanation of how food energy (calories) can be viewed as molecular potential energy (consistent with the atomic and molecular definition of internal energy).

Identify the type of energy transferred to your body in each of the following as either internal energy, heat transfer, or doing work: (a) basking in sunlight; (b) eating food; (c) riding an elevator to a higher floor.


What is the change in internal energy of a car if you put 12.0 gal of gasoline into its tank? The energy content of gasoline is 1 . 3 × 10 8 J/gal size 12{1 "." 3 times "10" rSup { size 8{8} } " J/gal"} {} . All other factors, such as the car’s temperature, are constant.

1 . 6 × 10 9 J size 12{1 "." 6 times "10" rSup { size 8{9} } " J"} {}

How much heat transfer occurs from a system, if its internal energy decreased by 150 J while it was doing 30.0 J of work?

A system does 1 . 80 × 10 8 J size 12{1 "." "80"´"10" rSup { size 8{8} } " J"} {} of work while 7 . 50 × 10 8 J size 12{7 "." "50"´"10" rSup { size 8{8} } " J"} {} of heat transfer occurs to the environment. What is the change in internal energy of the system assuming no other changes (such as in temperature or by the addition of fuel)?

- 9 . 30 × 10 8 J size 12{ +- 9 "." "30"´"10" rSup { size 8{8} } " J"} {}

What is the change in internal energy of a system which does 4 . 50 × 10 5 J size 12{4 "." "50"´"10" rSup { size 8{5} } " J"} {} of work while 3 . 00 × 10 6 J size 12{3 "." "00"´"10" rSup { size 8{6} } " J"} {} of heat transfer occurs into the system, and 8 . 00 × 10 6 J size 12{8 "." "00"´"10" rSup { size 8{6} } " J"} {} of heat transfer occurs to the environment?

Suppose a woman does 500 J of work and 9500 J of heat transfer occurs into the environment in the process. (a) What is the decrease in her internal energy, assuming no change in temperature or consumption of food? (That is, there is no other energy transfer.) (b) What is her efficiency?

(a) 1 . 0 × 10 4 J size 12{ - 1 "." 0 times "10" rSup { size 8{4} } " J"} {} , or 2 . 39 kcal

(b) 5.00%

(a) How much food energy will a man metabolize in the process of doing 35.0 kJ of work with an efficiency of 5.00%? (b) How much heat transfer occurs to the environment to keep his temperature constant? Explicitly show how you follow the steps in the Problem-Solving Strategy for thermodynamics found in Problem-Solving Strategies for Thermodynamics .

(a) What is the average metabolic rate in watts of a man who metabolizes 10,500 kJ of food energy in one day? (b) What is the maximum amount of work in joules he can do without breaking down fat, assuming a maximum efficiency of 20.0%? (c) Compare his work output with the daily output of a 187-W (0.250-horsepower) motor.

(a) 122 W

(b) 2 . 10 × 10 6 J size 12{2 "." "09" times "10" rSup { size 8{6} } " J"} {}

(c) Work done by the motor is 1 . 61 × 10 7 J size 12{1 "." "61" times "10" rSup { size 8{7} } " J"} {} ;thus the motor produces 7.67 times the work done by the man

(a) How long will the energy in a 1470-kJ (350-kcal) cup of yogurt last in a woman doing work at the rate of 150 W with an efficiency of 20.0% (such as in leisurely climbing stairs)? (b) Does the time found in part (a) imply that it is easy to consume more food energy than you can reasonably expect to work off with exercise?

(a) A woman climbing the Washington Monument metabolizes 6 . 00 × 10 2 kJ size 12{6 "." "00" times "10" rSup { size 8{2} } " kJ"} {} of food energy. If her efficiency is 18.0%, how much heat transfer occurs to the environment to keep her temperature constant? (b) Discuss the amount of heat transfer found in (a). Is it consistent with the fact that you quickly warm up when exercising?

(a) 492 kJ

(b) This amount of heat is consistent with the fact that you warm quickly when exercising. Since the body is inefficient, the excess heat produced must be dissipated through sweating, breathing, etc.

Questions & Answers

are nano particles real
Missy Reply
Hello, if I study Physics teacher in bachelor, can I study Nanotechnology in master?
Lale Reply
no can't
where we get a research paper on Nano chemistry....?
Maira Reply
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
what are the products of Nano chemistry?
Maira Reply
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Preparation and Applications of Nanomaterial for Drug Delivery
Hafiz Reply
Application of nanotechnology in medicine
has a lot of application modern world
what is variations in raman spectra for nanomaterials
Jyoti Reply
ya I also want to know the raman spectra
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
yes that's correct
I think
Nasa has use it in the 60's, copper as water purification in the moon travel.
nanocopper obvius
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
scanning tunneling microscope
how nano science is used for hydrophobicity
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
what is differents between GO and RGO?
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
analytical skills graphene is prepared to kill any type viruses .
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
The nanotechnology is as new science, to scale nanometric
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now

Source:  OpenStax, College physics: physics of california. OpenStax CNX. Sep 30, 2013 Download for free at http://legacy.cnx.org/content/col11577/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics: physics of california' conversation and receive update notifications?