# 13.1 Convergence and the central limit theorem  (Page 2/4)

 Page 2 / 4
$\phi \left(t\right)=E\left[{e}^{itX}\right]\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\text{and}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}{\phi }_{n}\left(t\right)=E\left[{e}^{it{S}_{n}^{*}}\right]={\phi }^{n}\left(t/\sigma \sqrt{n}\right)$

Using the power series expansion of φ about the origin noted above, we have

$\phi \left(t\right)=1-\frac{{\sigma }^{2}{t}^{2}}{2}+\beta \left(t\right)\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\text{where}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\beta \left(t\right)=o\left({t}^{2}\right)\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\text{as}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}t\to 0$

This implies

$|\phi \left(t/\sigma \sqrt{n}\right)-\left(1-{t}^{2}/2n\right)|=|\beta \left(t/\sigma \sqrt{n}\right)|=o\left({t}^{2}/{\sigma }^{2}n\right)$

so that

$n|\phi \left(t/\sigma \sqrt{n}\right)-\left(1-{t}^{2}/2n\right)|\to 0\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\text{as}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}n\to \infty$

A standard lemma of analysis ensures

$|{\phi }^{n}\left(t/\sigma \sqrt{n}\right)-{\left(1-{t}^{2}/2n\right)}^{n}|\le n|\phi \left(t/\sigma \sqrt{n}\right)-\left(1-{t}^{2}/2n\right)|\to 0\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\text{as}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}n\to \infty$

It is a well known property of the exponential that

${\left(1,-,\frac{{t}^{2}}{2n}\right)}^{n}\to {e}^{-{t}^{2}/2}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\text{as}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}n\to \infty$

so that

$\phi \left(t/\sigma \sqrt{n}\right)\to {e}^{-{t}^{2}/2}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\text{as}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}n\to \infty \phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\text{for}\phantom{\rule{4.pt}{0ex}}\text{all}\phantom{\rule{0.277778em}{0ex}}t$

By the convergence theorem on characteristic functions, above, ${F}_{n}\left(t\right)\to \Phi \left(t\right)$ .

$\square$

The theorem says that the distribution functions for sums of increasing numbers of the X i converge to the normal distribution function, but it does not tell how fast. It is instructive to consider some examples, which are easily worked out with the aid of our m-functions.

Demonstration of the central limit theorem

Discrete examples

We first examine the gaussian approximation in two cases. We take the sum of five iid simple random variables in each case. The first variable has six distinct values; thesecond has only three. The discrete character of the sum is more evident in the second case. Here we use not only the gaussian approximation, but the gaussian approximationshifted one half unit (the so called continuity correction for integer-values random variables). The fit is remarkably good in either case with only five terms.

A principal tool is the m-function diidsum (sum of discrete iid random variables). It uses a designated number of iterations of mgsum.

## First random variable

X = [-3.2 -1.05 2.1 4.6 5.3 7.2];PX = 0.1*[2 2 1 3 1 1];EX = X*PX' EX = 1.9900VX = dot(X.^2,PX) - EX^2 VX = 13.0904[x,px] = diidsum(X,PX,5); % Distribution for the sum of 5 iid rvF = cumsum(px); % Distribution function for the sum stairs(x,F) % Stair step plothold on plot(x,gaussian(5*EX,5*VX,x),'-.') % Plot of gaussian distribution function% Plotting details (see [link] ) Distribution for the sum of five iid random variables.

## Second random variable

X = 1:3; PX = [0.3 0.5 0.2]; EX = X*PX'EX = 1.9000 EX2 = X.^2*PX'EX2 = 4.1000 VX = EX2 - EX^2VX = 0.4900 [x,px]= diidsum(X,PX,5); % Distribution for the sum of 5 iid rv F = cumsum(px); % Distribution function for the sumstairs(x,F) % Stair step plot hold onplot(x,gaussian(5*EX,5*VX,x),'-.') % Plot of gaussian distribution function plot(x,gaussian(5*EX,5*VX,x+0.5),'o') % Plot with continuity correction% Plotting details (see [link] ) Distribution for the sum of five iid random variables.

As another example, we take the sum of twenty one iid simple random variables with integer values. We examine only part of the distribution function where most of theprobability is concentrated. This effectively enlarges the x-scale, so that the nature of the approximation is more readily apparent.

## Sum of twenty-one iid random variables

X = [0 1 3 5 6];PX = 0.1*[1 2 3 2 2];EX = dot(X,PX) EX = 3.3000VX = dot(X.^2,PX) - EX^2 VX = 4.2100[x,px] = diidsum(X,PX,21);F = cumsum(px); FG = gaussian(21*EX,21*VX,x);stairs(40:90,F(40:90)) hold onplot(40:90,FG(40:90)) % Plotting details (see [link] ) Distribution for the sum of twenty one iid random variables.

what is variations in raman spectra for nanomaterials
I only see partial conversation and what's the question here!
what about nanotechnology for water purification
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
what is the stm
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
why we need to study biomolecules, molecular biology in nanotechnology?
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
why?
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
what does nano mean?
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
absolutely yes
Daniel
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
A fair die is tossed 180 times. Find the probability P that the face 6 will appear between 29 and 32 times inclusive  By  By  By By Rhodes By  