# 13.1 Convergence and the central limit theorem

 Page 1 / 4
The central limit theorem (CLT) asserts that the sum of a large class of independent random variables, each with reasonable distributions,is approximately normally distributed. Various versions of this theorem have been studied intensively. On the other hand, certain common forms serve as the basis of an extraordinary amount of applied work. In the statistics of large samples, the sample average is approximately normal—whether or not the population distribution is normal. In much of the theory of errors of measurement, the observed error is the sum of a large number of independent random quantities which contribute additively to the result. Similarly, in the theory of noise, the noise signal is the sum of a large number of random components, independently produced. In such situations, the assumption of a normal population distribution is frequently quite appropriate

## The central limit theorem

The central limit theorem (CLT) asserts that if random variable X is the sum of a large class of independent random variables, each with reasonable distributions, then X is approximately normally distributed. This celebrated theorem has been the object of extensive theoretical research directed toward the discoveryof the most general conditions under which it is valid. On the other hand, this theorem serves as the basis of an extraordinary amount of applied work.In the statistics of large samples, the sample average is a constant times the sum of the random variables in the sampling process . Thus, for large samples,the sample average is approximately normal—whether or not the population distribution is normal. In much of the theory of errors of measurement,the observed error is the sum of a large number of independent random quantities which contribute additively to the result. Similarly, in the theory of noise, thenoise signal is the sum of a large number of random components, independently produced. In such situations, the assumption of a normal population distribution is frequentlyquite appropriate.

We consider a form of the CLT under hypotheses which are reasonable assumptions in many practical situations. We sketch a proof of this version of the CLT,known as the Lindeberg-Lévy theorem, which utilizes the limit theorem on characteristic functions, above, along with certain elementary facts from analysis. Itillustrates the kind of argument used in more sophisticated proofs required for more general cases.

Consider an independent sequence $\left\{{X}_{n}:1\le n\right\}$ of random variables. Form the sequence of partial sums

${S}_{n}=\sum _{i=1}^{n}{X}_{i}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\forall \phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}n\ge 1\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\text{with}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}E\left[{S}_{n}\right]=\sum _{i=1}^{n}E\left[{X}_{i}\right]\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\text{and}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\mathrm{Var}\phantom{\rule{0.166667em}{0ex}}\left[{S}_{n}\right]=\sum _{i=1}^{n}\mathrm{Var}\phantom{\rule{0.166667em}{0ex}}\left[{X}_{i}\right]$

Let ${S}_{n}^{*}$ be the standardized sum and let F n be the distribution function for ${S}_{n}^{*}$ . The CLT asserts that under appropriate conditions, ${F}_{n}\left(t\right)\to \Phi \left(t\right)$ as $n\to \infty$ for all t . We sketch a proof of the theorem under the condition the X i form an iid class.

Central Limit Theorem (Lindeberg-Lévy form)

If $\left\{{X}_{n}:1\le n\right\}$ is iid, with

$E\left[{X}_{i}\right]=\mu ,\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\mathrm{Var}\phantom{\rule{0.166667em}{0ex}}\left[{X}_{i}\right]={\sigma }^{2},\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\text{and}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}{S}_{n}^{*}=\frac{{S}_{n}-n\mu }{\sigma \sqrt{n}}$

then

${F}_{n}\left(t\right)\to \Phi \left(t\right)\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\text{as}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}n\to \infty ,\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\text{for}\phantom{\rule{4.pt}{0ex}}\text{all}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}t$

IDEAS OF A PROOF

There is no loss of generality in assuming $\mu =0$ . Let φ be the common characteristic function for the X i , and for each n let φ n be the characteristic function for ${S}_{n}^{*}$ . We have

what is variations in raman spectra for nanomaterials
I only see partial conversation and what's the question here!
what about nanotechnology for water purification
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
what is the stm
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
why we need to study biomolecules, molecular biology in nanotechnology?
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
why?
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
what does nano mean?
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
absolutely yes
Daniel
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
A fair die is tossed 180 times. Find the probability P that the face 6 will appear between 29 and 32 times inclusive By By Nick Swain By       