<< Chapter < Page Chapter >> Page >
A teacher's guide to lecturing on ellipses.

Only two shapes left! But these two are doozies. Expect to spend at least a couple of days on each—they get a major test all to themselves.

In terms of teaching order, both shapes are going to follow the same pattern that we set with parabolas. First, the geometry. Then, the machinery. And finally, at the end, the connection between the two.

So, as always, don’t start by telling them the shape. Let them do the assignment “Distance to this point plus distance to that point is constant” in groups, and help them out until they get the shape themselves. A good hint is that there are two pretty easy points to find on the x -axis, and two harder points to find on the y -axis. As always, keep wandering and hinting until most groups have drawn something like an ellipse. Then you lecture.

The lecture starts by pointing out what we have. We have two points, called the foci. (One “focus,” two “foci.”) They are the defining points of the ellipse, but they are not part of the ellipse. And we also have a distance, which is part of the definition.

Because the foci were horizontally across from each other, we have a horizontal ellipse. If they were vertically lined up, we would have a vertical ellipse. You can also do diagonal ellipses, but we’re not going to do that here.

Let’s talk more about the geometry. One way you can draw a circle is to thumbtack a piece of string to a piece of cardboard, and tie the other end of the string to a pen. Keeping the string taut, you pull all the way around, and you end up with a circle. Note how you are using the geometric definition of a circle, to draw one: the thumbtack is the center, and the piece of string is the radius.

Now that we have our geometric definition of an ellipse, can anyone think of a way to draw one of those? (probably not) Here’s what you do. Take a piece of string, and thumbtack both ends down in a piece of cardboard, so that the string is not taut. Then, using your pen, pull the string taut.

A picture illustrating the experiment with the paper, pencil and thumbnails.

Now, pull the pen around, keeping the string taut. You see what this does? While the string is taut, the distance from the pen to the left thumbtack, plus the distance from the pen to the right thumbtack, is always a constant —namely, the length of the string. So this gives you an ellipse. I think most people can picture this if they close their eyes. Sometimes I assign them to do this at home.

OK, so, what good are ellipses? The best example I have is orbits. The Earth, for instance, is traveling in an ellipse, with the sun at one of the two foci. The moon’s orbit around the Earth, or even a satellite’s orbit around the Earth, are all ellipses.

Another cool ellipse thing, which a lot of people have seen in a museum, is that if you are in an elliptical room, and one person stands at each focus, you can hear each other whisper. Just as a parabola collects all incoming parallel lines at the focus, an ellipse bounces everything from one focus straight to the other focus.

OK, on to the machinery. Here is the equation for a horizontal ellipse, centered at the origin.

Questions & Answers

how to study physic and understand
Ewa Reply
what is conservative force with examples
Moses
what is work
Fredrick Reply
the transfer of energy by a force that causes an object to be displaced; the product of the component of the force in the direction of the displacement and the magnitude of the displacement
AI-Robot
why is it from light to gravity
Esther Reply
difference between model and theory
Esther
Is the ship moving at a constant velocity?
Kamogelo Reply
The full note of modern physics
aluet Reply
introduction to applications of nuclear physics
aluet Reply
the explanation is not in full details
Moses Reply
I need more explanation or all about kinematics
Moses
yes
zephaniah
I need more explanation or all about nuclear physics
aluet
Show that the equal masses particles emarge from collision at right angle by making explicit used of fact that momentum is a vector quantity
Muhammad Reply
yh
Isaac
A wave is described by the function D(x,t)=(1.6cm) sin[(1.2cm^-1(x+6.8cm/st] what are:a.Amplitude b. wavelength c. wave number d. frequency e. period f. velocity of speed.
Majok Reply
what is frontier of physics
Somto Reply
A body is projected upward at an angle 45° 18minutes with the horizontal with an initial speed of 40km per second. In hoe many seconds will the body reach the ground then how far from the point of projection will it strike. At what angle will the horizontal will strike
Gufraan Reply
Suppose hydrogen and oxygen are diffusing through air. A small amount of each is released simultaneously. How much time passes before the hydrogen is 1.00 s ahead of the oxygen? Such differences in arrival times are used as an analytical tool in gas chromatography.
Ezekiel Reply
please explain
Samuel
what's the definition of physics
Mobolaji Reply
what is physics
Nangun Reply
the science concerned with describing the interactions of energy, matter, space, and time; it is especially interested in what fundamental mechanisms underlie every phenomenon
AI-Robot
what is isotopes
Nangun Reply
nuclei having the same Z and different N s
AI-Robot
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Advanced algebra ii: teacher's guide. OpenStax CNX. Aug 13, 2009 Download for free at http://cnx.org/content/col10687/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Advanced algebra ii: teacher's guide' conversation and receive update notifications?

Ask