<< Chapter < Page Chapter >> Page >

The Holy Grail for early RISC machines was to achieve one instruction per clock. The idealized RISC computer running at, say, 50 MHz, would be able to issue 50 million instructions per second assuming perfect pipeline scheduling. As we have seen, a single instruction will take five or more clock ticks to get through the instruction pipeline, but if the pipeline can be kept full, the aggregate rate will, in fact, approach one instruction per clock. Once the basic pipelined RISC processor designs became successful, competition ensued to determine which company could build the best RISC processor.

Second-generation RISC designers used three basic methods to develop competitive RISC processors:

  • Improve the manufacturing processes to simply make the clock rate faster. Take a simple design; make it smaller and faster. This approach was taken by the Alpha processors from DEC. Alpha processors typically have had clock rates double those of the closest competitor.
  • Add duplicate compute elements on the space available as we can manufacture chips with more transistors. This could allow two instructions to be executed per cycle and could double performance without increasing clock rate. This technique is called superscalar.
  • Increase the number of stages in the pipeline above five. If the instructions can truly be decomposed evenly into, say, ten stages, the clock rate could theoretically be doubled without requiring new manufacturing processes. This technique was called superpipelining . The MIPS processors used this technique with some success.

Superscalar processors

The way you get two or more instructions per clock is by starting several operations side by side, possibly in separate pipelines. In [link] , if you have an integer addition and a multiplication to perform, it should be possible to begin them simultaneously, provided they are independent of each other (as long as the multiplication does not need the output of the addition as one of its operands or vice versa). You could also execute multiple fixed-point instructions — compares, integer additions, etc. — at the same time, provided that they, too, are independent. Another term used to describe superscalar processors is multiple instruction issue processors.

Decomposing a serial stream

The number and variety of operations that can be run in parallel depends on both the program and the processor. The program has to have enough usable parallelism so that there are multiple things to do, and the processor has to have an appropriate assortment of functional units and the ability to keep them busy. The idea is conceptually simple, but it can be a challenge for both hardware designers and compiler writers. Every opportunity to do several things in parallel exposes the danger of violating some precedence (i.e., performing computations in the wrong order).

Superpipelined processors

Roughly stated, simpler circuitry can run at higher clock speeds. Put yourself in the role of a CPU designer again. Looking at the instruction pipeline of your processor, you might decide that the reason you can’t get more speed out of it is that some of the stages are too complicated or have too much going on, and they are placing limits on how fast the whole pipeline can go. Because the stages are clocked in unison, the slowest of them forms a weak link in the chain.

If you divide the complicated stages into less complicated portions, you can increase the overall speed of the pipeline. This is called superpipelining . More instruction pipeline stages with less complexity per stage will do the same work as a pipelined processor, but with higher throughput due to increased clock speed. [link] shows an eight-stage pipeline used in the MIPS R4000 processor.

Mips r4000 instruction pipeline

Theoretically, if the reduced complexity allows the processor to clock faster, you can achieve nearly the same performance as superscalar processors, yet without instruction mix preferences. For illustration, picture a superscalar processor with two units — fixed- and floating-point — executing a program that is composed solely of fixed-point calculations; the floating-point unit goes unused. This reduces the superscalar performance by one half compared to its theoretical maximum. A superpipelined processor, on the other hand, will be perfectly happy to handle an unbalanced instruction mix at full speed.

Superpipelines are not new; deep pipelines have been employed in the past, notably on the CDC 6600. The label is a marketing creation to draw contrast to superscalar processing, and other forms of efficient, high-speed computing.

Superpipelining can be combined with other approaches. You could have a superscalar machine with deep pipelines (DEC AXP and MIPS R-8000 are examples). In fact, you should probably expect that faster pipelines with more stages will become so commonplace that nobody will remember to call them superpipelines after a while.

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, High performance computing. OpenStax CNX. Aug 25, 2010 Download for free at http://cnx.org/content/col11136/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'High performance computing' conversation and receive update notifications?

Ask