# 12.2 The first law of thermodynamics and some simple processes  (Page 2/12)

 Page 2 / 12

Note that if $\Delta V$ is positive, then $W$ is positive, meaning that work is done by the gas on the outside world.

(Note that the pressure involved in this work that we’ve called $P$ is the pressure of the gas inside the tank. If we call the pressure outside the tank ${P}_{\text{ext}}$ , an expanding gas would be working against the external pressure; the work done would therefore be $W=-{P}_{\text{ext}}\text{Δ}\mathit{V}$ (isobaric process). Many texts use this definition of work, and not the definition based on internal pressure, as the basis of the First Law of Thermodynamics. This definition reverses the sign conventions for work, and results in a statement of the first law that becomes $\text{Δ}\mathit{U}=Q+W$ .)

It is not surprising that $W=P\Delta V$ , since we have already noted in our treatment of fluids that pressure is a type of potential energy per unit volume and that pressure in fact has units of energy divided by volume. We also noted in our discussion of the ideal gas law that $\text{PV}$ has units of energy. In this case, some of the energy associated with pressure becomes work.

[link] shows a graph of pressure versus volume (that is, a $\text{PV}$ diagram for an isobaric process. You can see in the figure that the work done is the area under the graph. This property of $\text{PV}$ diagrams is very useful and broadly applicable: the work done on or by a system in going from one state to another equals the area under the curve on a $\text{PV}$ diagram . A graph of pressure versus volume for a constant-pressure, or isobaric, process, such as the one shown in [link] . The area under the curve equals the work done by the gas, since W = P Δ V size 12{W=PΔV} {} . (a) A PV size 12{ ital "PV"} {} diagram in which pressure varies as well as volume. The work done for each interval is its average pressure times the change in volume, or the area under the curve over that interval. Thus the total area under the curve equals the total work done. (b) Work must be done on the system to follow the reverse path. This is interpreted as a negative area under the curve.

We can see where this leads by considering [link] (a), which shows a more general process in which both pressure and volume change. The area under the curve is closely approximated by dividing it into strips, each having an average constant pressure ${P}_{i\left(\text{ave}\right)}$ . The work done is ${W}_{i}={P}_{i\left(\text{ave}\right)}\Delta {V}_{i}$ for each strip, and the total work done is the sum of the ${W}_{i}$ . Thus the total work done is the total area under the curve. If the path is reversed, as in [link] (b), then work is done on the system. The area under the curve in that case is negative, because $\Delta V$ is negative.

$\text{PV}$ diagrams clearly illustrate that the work done depends on the path taken and not just the endpoints . This path dependence is seen in [link] (a), where more work is done in going from A to C by the path via point B than by the path via point D. The vertical paths, where volume is constant, are called isochoric processes. Since volume is constant, $\Delta V=0$ , and no work is done in an isochoric process. Now, if the system follows the cyclical path ABCDA, as in [link] (b), then the total work done is the area inside the loop. The negative area below path CD subtracts, leaving only the area inside the rectangle. In fact, the work done in any cyclical process (one that returns to its starting point) is the area inside the loop it forms on a $\text{PV}$ diagram, as [link] (c) illustrates for a general cyclical process. Note that the loop must be traversed in the clockwise direction for work to be positive—that is, for there to be a net work output.

Application of nanotechnology in medicine
what is variations in raman spectra for nanomaterials
I only see partial conversation and what's the question here!
what about nanotechnology for water purification
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
what is the stm
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
why we need to study biomolecules, molecular biology in nanotechnology?
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
why?
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
hi
Loga
what does nano mean?
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
How we can toraidal magnetic field
How we can create polaidal magnetic field
4
Because I'm writing a report and I would like to be really precise for the references
where did you find the research and the first image (ECG and Blood pressure synchronized)? Thank you!! By OpenStax By By Marion Cabalfin By Zarina Chocolate By OpenStax By Anh Dao By Cath Yu By Brooke Delaney By OpenStax By OpenStax