# 11.4 The regression equation (modified r. bloom)

 Page 1 / 2
This module provides an overview of Linear Regression and Correlation: The Regression Equation as a part of R. Bloom's custom Collaborative Statistics collection col10617. It has been modified from the original module m17090 in the Collaborative Statistics collection (col10522) by Barbara Illowsky and Susan Dean. This module now includes instructions for finding and graphing the regression equation and scatterplot using the LinRegTTest on the TI-83,83+,84+ calculators.

## Understanding the regression equation

Data rarely fit a straight line exactly. Usually, you must be satisfied with rough predictions. Typically, you have a set of data whose scatter plot appears to "fit" a straight line. This is called a Line of Best Fit or Least Squares Line .

A random sample of 11 statistics students produced the following data where $x$ is the third exam score, out of 80, and $y$ is the final exam score, out of 200. Can you predict the final exam score of a random student if you know the third exam score?

The third exam score, $x$ , is the independent variable and the final exam score, $y$ , is the dependent variable. We will plot a regression line that best "fits" the data. If each of youwere to fit a line "by eye", you would draw different lines. We can use what is called a least-squares regression line to obtain the best fit line.

Consider the following diagram. Each point of data is of the the form $\left(x,y\right)$ and each point of the line of best fit using least-squares linear regression has the form $\left(x,\stackrel{^}{y}\right)$ .

The $\stackrel{^}{y}$ is read "y hat" and is the estimated value of $y$ . It is the value of $y$ obtained using the regression line. It is not generally equal to the observed $y$ from data.

The term $y-\stackrel{^}{y}$ is called the residual . It is the observed $y$ value − the predicted $\stackrel{^}{y}$ value. It can also be called the "error".It is not an error in the sense of a mistake, but measures the vertical distance between the observed value $y$ and the estimated value $\stackrel{^}{y}$ . In other words, it measures the vertical distance between the actual data point and the predicted point on the line.

If the observed data point lies above the line, the residual is positive, and the line underestimates the actual data value for $y$ . In the observed data point lies below the line, the residual is negative, and the line overestimates that actual data value for $y$ .

In the Figure 2 diagram above, ${y}_{0}-{\stackrel{^}{y}}_{0}={\epsilon }_{0}$ is the residual for the point shown. Here the point lies above the line and the residual is positive.

$\epsilon$ = the Greek letter epsilon

For each data point, you can calculate the residuals or errors, ${y}_{i}-{\stackrel{^}{y}}_{i}={\epsilon }_{i}$ for $i=\text{1, 2, 3, ..., 11}$ .

Each $\epsilon$ is a vertical distance.

For the example about the third exam scores and the final exam scores for the 11 statistics students, there are 11 data points. Therefore, there are 11 $\epsilon$ values. If you square each $\epsilon$ and add, you get

$\left({\epsilon }_{1}{\right)}^{2}+\left({\epsilon }_{2}{\right)}^{2}+\text{...}+\left({\epsilon }_{11}{\right)}^{2}=\stackrel{11}{\underset{\text{i = 1}}{\Sigma }}{\epsilon }^{2}$

This is called the Sum of Squared Errors (SSE) .

Using calculus, you can determine the values of $a$ and $b$ that make the SSE a minimum. When you make the SSE a minimum, you have determined the points that are on the line of best fit. It turns out thatthe line of best fit has the equation:

What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
why we need to study biomolecules, molecular biology in nanotechnology?
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
why?
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
what does nano mean?
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
for screen printed electrodes ?
SUYASH
What is lattice structure?
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
what's the easiest and fastest way to the synthesize AgNP?
China
Cied
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!