<< Chapter < Page Chapter >> Page >

An AM radio transmitter broadcasts 50.0 kW of power uniformly in all directions. (a) Assuming all of the radio waves that strike the ground are completely absorbed, and that there is no absorption by the atmosphere or other objects, what is the intensity 30.0 km away? (Hint: Half the power will be spread over the area of a hemisphere.) (b) What is the maximum electric field strength at this distance?

Suppose the maximum safe intensity of microwaves for human exposure is taken to be 1 . 00 W /m 2 size 12{1 "." "00""W/m" rSup { size 8{2} } } {} . (a) If a radar unit leaks 10.0 W of microwaves (other than those sent by its antenna) uniformly in all directions, how far away must you be to be exposed to an intensity considered to be safe? Assume that the power spreads uniformly over the area of a sphere with no complications from absorption or reflection. (b) What is the maximum electric field strength at the safe intensity? (Note that early radar units leaked more than modern ones do. This caused identifiable health problems, such as cataracts, for people who worked near them.)

(a) 89.2 cm

(b) 27.4 V/m

A 2.50-m-diameter university communications satellite dish receives TV signals that have a maximum electric field strength (for one channel) of 7 . 50 μ V/m size 12{7 "." "50" mV/m} {} . (See [link] .) (a) What is the intensity of this wave? (b) What is the power received by the antenna? (c) If the orbiting satellite broadcasts uniformly over an area of 1 . 50 × 10 13 m 2 size 12{1 "." "50"´"10" rSup { size 8{"13"} } " m" rSup { size 8{2} } } {} (a large fraction of North America), how much power does it radiate?

A large, round dish antenna looking like a giant white saucer is shown. It rests on a pillar like structure based on the ground. It is shown to receive TV signals in the form of electromagnetic waves shown as wavy arrows.
Satellite dishes receive TV signals sent from orbit. Although the signals are quite weak, the receiver can detect them by being tuned to resonate at their frequency.

Lasers can be constructed that produce an extremely high intensity electromagnetic wave for a brief time—called pulsed lasers. They are used to ignite nuclear fusion, for example. Such a laser may produce an electromagnetic wave with a maximum electric field strength of 1 . 00 × 10 11 V / m size 12{1 "." "00"´"10" rSup { size 8{"11"} } " V"/m} {} for a time of 1.00 ns. (a) What is the maximum magnetic field strength in the wave? (b) What is the intensity of the beam? (c) What energy does it deliver on a 1 . 00 -mm 2 size 12{1 "." "00""-mm" rSup { size 8{2} } } {} area?

(a) 333 T

(b) 1 . 33 × 10 19 W/m 2 size 12{1 "." "33"´"10" rSup { size 8{"19"} } "W/m" rSup { size 8{2} } } {}

(c) 13.3 kJ

Show that for a continuous sinusoidal electromagnetic wave, the peak intensity is twice the average intensity ( I 0 = 2 I ave size 12{I rSub { size 8{0} } =2I rSub { size 8{"ave"} } } {} ), using either the fact that E 0 = 2 E rms size 12{E rSub { size 8{0} } = sqrt {2} E rSub { size 8{"rms"} } } {} , or B 0 = 2 B rms size 12{B rSub { size 8{0} } = sqrt {2} B rSub { size 8{"rms"} } } {} , where rms means average (actually root mean square, a type of average).

Suppose a source of electromagnetic waves radiates uniformly in all directions in empty space where there are no absorption or interference effects. (a) Show that the intensity is inversely proportional to r 2 size 12{r rSup { size 8{2} } } {} , the distance from the source squared. (b) Show that the magnitudes of the electric and magnetic fields are inversely proportional to r size 12{r} {} .

(a) I = P A = P r 2 1 r 2 size 12{I= { {P} over {A} } = { {P} over {4π r rSup { size 8{2} } } } prop { {1} over {r rSup { size 8{2} } } } } {}

(b) I∝E 0 2 , B 0 2 E 0 2 , B 0 2 1 r 2 E 0 , B 0 1 r

Integrated Concepts

An LC size 12{ ital "LC"} {} circuit with a 5.00-pF capacitor oscillates in such a manner as to radiate at a wavelength of 3.30 m. (a) What is the resonant frequency? (b) What inductance is in series with the capacitor?

Integrated Concepts

What capacitance is needed in series with an 800 μ H size 12{"800"-mH} {} inductor to form a circuit that radiates a wavelength of 196 m?

13.5 pF

Questions & Answers

Preparation and Applications of Nanomaterial for Drug Delivery
Hafiz Reply
Application of nanotechnology in medicine
what is variations in raman spectra for nanomaterials
Jyoti Reply
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
yes that's correct
I think
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
scanning tunneling microscope
how nano science is used for hydrophobicity
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
what is differents between GO and RGO?
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
analytical skills graphene is prepared to kill any type viruses .
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
The nanotechnology is as new science, to scale nanometric
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
what school?
biomolecules are e building blocks of every organics and inorganic materials.
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
sciencedirect big data base
Introduction about quantum dots in nanotechnology
Praveena Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Introduction to physics for vanguard high school (derived from college physics). OpenStax CNX. Oct 15, 2014 Download for free at http://legacy.cnx.org/content/col11715/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Introduction to physics for vanguard high school (derived from college physics)' conversation and receive update notifications?