<< Chapter < Page Chapter >> Page >
I ave = cB 0 2 0 , size 12{I rSub { size 8{"ave"} } = { { ital "cB" rSub { size 8{0} } rSup { size 8{2} } } over {2μ rSub { size 8{0} } } } } {}

where B 0 size 12{B rSub { size 8{0} } } {} is the maximum magnetic field strength.

One more expression for I ave size 12{I rSub { size 8{"ave"} } } {} in terms of both electric and magnetic field strengths is useful. Substituting the fact that c B 0 = E 0 size 12{c cdot B rSub { size 8{0} } =E rSub { size 8{0} } } {} , the previous expression becomes

I ave = E 0 B 0 0 . size 12{I rSub { size 8{"ave"} } = { {E rSub { size 8{0} } B rSub { size 8{0} } } over {2μ rSub { size 8{0} } } } } {}

Whichever of the three preceding equations is most convenient can be used, since they are really just different versions of the same principle: Energy in a wave is related to amplitude squared. Furthermore, since these equations are based on the assumption that the electromagnetic waves are sinusoidal, peak intensity is twice the average; that is, I 0 = 2 I ave size 12{I rSub { size 8{0} } =2I rSub { size 8{"ave"} } } {} .

Calculate microwave intensities and fields

On its highest power setting, a certain microwave oven projects 1.00 kW of microwaves onto a 30.0 by 40.0 cm area. (a) What is the intensity in W/m 2 size 12{"W/m" rSup { size 8{2} } } {} ? (b) Calculate the peak electric field strength E 0 size 12{E rSub { size 8{0} } } {} in these waves. (c) What is the peak magnetic field strength B 0 size 12{B rSub { size 8{0} } } {} ?

Strategy

In part (a), we can find intensity from its definition as power per unit area. Once the intensity is known, we can use the equations below to find the field strengths asked for in parts (b) and (c).

Solution for (a)

Entering the given power into the definition of intensity, and noting the area is 0.300 by 0.400 m, yields

I = P A = 1 . 00 kW 0 . 300 m × 0 . 400 m . size 12{I= { {P} over {A} } = { {1 "." "00"" kW"} over {0 "." "300 m"×0 "." "400 m"} } } {}

Here I = I ave size 12{I=I rSub { size 8{"ave"} } } {} , so that

I ave = 1000 W 0 . 120 m 2 = 8 . 33 × 10 3 W/m 2 . size 12{I rSub { size 8{"ave"} } = { {"1000"" W"} over {0 "." "120"" m" rSup { size 8{2} } } } =8 "." "33"×"10" rSup { size 8{3} } " W/m" rSup { size 8{2} } } {}

Note that the peak intensity is twice the average:

I 0 = 2 I ave = 1 . 67 × 10 4 W / m 2 . size 12{I rSub { size 8{0} } =2I rSub { size 8{"ave"} } =1 "." "67" times "10" rSup { size 8{4} } {W} slash {m rSup { size 8{2} } } } {}

Solution for (b)

To find E 0 size 12{E rSub { size 8{0} } } {} , we can rearrange the first equation given above for I ave size 12{I rSub { size 8{"ave"} } } {} to give

E 0 = 2 I ave 0 1/2 . size 12{E rSub { size 8{0} } = left ( { {2I rSub { size 8{"ave"} } } over {ce rSub { size 8{0} } } } right ) rSup { size 8{ {1}wideslash {2} } } } {}

Entering known values gives

E 0 = 2 ( 8 . 33 × 10 3 W/m 2 ) ( 3 . 00 × 10 8 m/s ) ( 8.85 × 10 12 C 2 / N m 2 ) = 2.51 × 10 3 V/m . alignl { stack { size 12{E rSub { size 8{0} } = sqrt { { {2 \( 8 "." "33"´"10" rSup { size 8{3} } " W/m" rSup { size 8{2} } \) } over { \( 3 "." "00"´"10" rSup { size 8{8} } " m/s" \) \( 8 "." "85"´"10" rSup { size 8{ +- 2} } C rSup { size 8{2} } /N cdot m rSup { size 8{2} } \) } } } } {} #=2 "." "51"´"10" rSup { size 8{3} } " V/m" "." {} } } {}

Solution for (c)

Perhaps the easiest way to find magnetic field strength, now that the electric field strength is known, is to use the relationship given by

B 0 = E 0 c . size 12{B rSub { size 8{0} } = { {E rSub { size 8{0} } } over {c} } } {}

Entering known values gives

B 0 = 2.51 × 10 3 V/m 3.0 × 10 8 m/s = 8.35 × 10 6 T . alignl { stack { size 12{B rSub { size 8{0} } = { {2 "." "51"´"10" rSup { size 8{3} } " V/m"} over {3 "." 0´"10" rSup { size 8{8} } " m/s"} } } {} #=8 "." "35"´"10" rSup { size 8{-6} } " T" "." {} } } {}

Discussion

As before, a relatively strong electric field is accompanied by a relatively weak magnetic field in an electromagnetic wave, since B = E / c size 12{B= {E} slash {c} } {} , and c size 12{c} {} is a large number.

Section summary

  • The energy carried by any wave is proportional to its amplitude squared. For electromagnetic waves, this means intensity can be expressed as
    I ave = 0 E 0 2 2 , size 12{I rSub { size 8{"ave"} } = { {ce rSub { size 8{0} } E rSub { size 8{0} } rSup { size 8{2} } } over {2} } } {}

    where I ave size 12{I rSub { size 8{"ave"} } } {} is the average intensity in W/m 2 size 12{"W/m" rSup { size 8{2} } } {} , and E 0 size 12{E rSub { size 8{0} } } {} is the maximum electric field strength of a continuous sinusoidal wave.

  • This can also be expressed in terms of the maximum magnetic field strength B 0 size 12{B rSub { size 8{0} } } {} as
    I ave = cB 0 2 0 size 12{I rSub { size 8{"ave"} } = { { ital "cB" rSub { size 8{0} } rSup { size 8{2} } } over {2m rSub { size 8{0} } } } } {}

    and in terms of both electric and magnetic fields as

    I ave = E 0 B 0 0 . size 12{I rSub { size 8{"ave"} } = { {E rSub { size 8{0} } B rSub { size 8{0} } } over {2m rSub { size 8{0} } } } } {}
  • The three expressions for I ave size 12{I rSub { size 8{"ave"} } } {} are all equivalent.

Problems&Exercises

What is the intensity of an electromagnetic wave with a peak electric field strength of 125 V/m?

I = 0 E 0 2 2 = 3.00 × 10 8 m/s 8.85 × 10 –12 C 2 /N m 2 1 25 V/m 2 2 = 20. 7 W/m 2

Find the intensity of an electromagnetic wave having a peak magnetic field strength of 4 . 00 × 10 9 T size 12{4 "." "00"´"10" rSup { size 8{-9} } " T"} {} .

Assume the helium-neon lasers commonly used in student physics laboratories have power outputs of 0.250 mW. (a) If such a laser beam is projected onto a circular spot 1.00 mm in diameter, what is its intensity? (b) Find the peak magnetic field strength. (c) Find the peak electric field strength.

(a) I = P A = P π r 2 = 0 . 250 × 10 3 W π 0 . 500 × 10 3 m 2 = 318 W/m 2 size 12{I= { {P} over {A} } = { {P} over {p r rSup { size 8{2} } } } = { {0 "." "250"´"10" rSup { size 8{-3} } " W"} over {∂ left (0 "." "500"´"10" rSup { size 8{-3} } " m" right ) rSup { size 8{2} } } } ="318 W/m" rSup { size 8{2} } } {}

(b) I ave = cB 0 2 0 B 0 = 0 I c 1 / 2 = 2 4 π × 10 7 T m/A 318 . 3 W/m 2 3.00 × 10 8 m/s 1 / 2 = 1 . 63 × 10 6 T alignl { stack { size 12{I rSub { size 8{"ave"} } = { { ital "cB" rSub { size 8{0} rSup { size 8{2} } } } over {2m rSub { size 8{0} } } } drarrow B rSub { size 8{0} } = left ( { {2m rSub { size 8{0} } I} over {c} } right ) rSup { size 8{1/2} } } {} #= left [ { {2 left (4¶´"10" rSup { size 8{-7} } " T" cdot "m/A" right ) left ("318" "." "3 W/m" rSup { size 8{2} } right )} over {3 "." "00"´"10" rSup { size 8{8} } " m/s"} } right ] rSup { size 8{ {1} slash {2} } } {} #= {underline {1 "." "63"´"10" rSup { size 8{-6} } " T"}} {} } } {}

(c) E 0 = cB 0 = 3 .00 × 10 8 m/s 1.633 × 10 6 T = 4 . 90 × 10 2 V/m alignl { stack { size 12{E rSub { size 8{0} } = ital "cB" rSub { size 8{0} } = left (3 "." "00"´"10" rSup { size 8{8} } " m/s" right ) left (1 "." "633"´"10" rSup { size 8{-6} } " T" right )} {} #= {underline {4 "." "90"´"10" rSup { size 8{2} } " V/m"}} {} } } {}

Questions & Answers

what is variations in raman spectra for nanomaterials
Jyoti Reply
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
LITNING Reply
what is a peer
LITNING Reply
What is meant by 'nano scale'?
LITNING Reply
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Introduction to physics for vanguard high school (derived from college physics). OpenStax CNX. Oct 15, 2014 Download for free at http://legacy.cnx.org/content/col11715/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Introduction to physics for vanguard high school (derived from college physics)' conversation and receive update notifications?

Ask