# 11.2 Graphing linear equations  (Page 3/6)

 Page 3 / 6

Graph the equation: $x+y=-2.$ Graph the equation: $x-y=6.$ In the previous example, the three points we found were easy to graph. But this is not always the case. Let’s see what happens in the equation $2x+y=3.$ If $y$ is $0,$ what is the value of $x?$ The solution is the point $\left(\frac{3}{2},0\right).$ This point has a fraction for the $x$ -coordinate. While we could graph this point, it is hard to be precise graphing fractions. Remember in the example $y=\frac{1}{2}x+3,$ we carefully chose values for $x$ so as not to graph fractions at all. If we solve the equation $2x+y=3$ for $y,$ it will be easier to find three solutions to the equation.

$2x+y=3$
$y=-2x+3$

Now we can choose values for $x$ that will give coordinates that are integers. The solutions for $x=0,x=1,$ and $x=-1$ are shown.

$y=-2x+3$
$x$ $y$ $\left(x,y\right)$
$0$ $5$ $\left(-1,5\right)$
$1$ $3$ $\left(0,3\right)$
$-1$ $1$ $\left(1,1\right)$ Graph the equation $3x+y=-1.$

## Solution

Find three points that are solutions to the equation.

First, solve the equation for $y.$

$\begin{array}{ccc}\hfill 3x+y& =& -1\hfill \\ \hfill y& =& -3x-1\hfill \end{array}$

We’ll let $x$ be $0,1,$ and $-1$ to find three points. The ordered pairs are shown in the table. Plot the points, check that they line up, and draw the line.

$y=-3x-1$
$x$ $y$ $\left(x,y\right)$
$0$ $-1$ $\left(0,-1\right)$
$1$ $-4$ $\left(1,-4\right)$
$-1$ $2$ $\left(-1,2\right)$ If you can choose any three points to graph a line, how will you know if your graph matches the one shown in the answers in the book? If the points where the graphs cross the $x\text{-}$ and $y$ -axes are the same, the graphs match.

Graph each equation: $2x+y=2.$ Graph each equation: $4x+y=-3.$ ## Graph vertical and horizontal lines

Can we graph an equation with only one variable? Just $x$ and no $y,$ or just $y$ without an $x?$ How will we make a table of values to get the points to plot?

Let’s consider the equation $x=-3.$ The equation says that $x$ is always equal to $-3,$ so its value does not depend on $y.$ No matter what $y$ is, the value of $x$ is always $-3.$

To make a table of solutions, we write $-3$ for all the $x$ values. Then choose any values for $y.$ Since $x$ does not depend on $y,$ you can chose any numbers you like. But to fit the size of our coordinate graph, we’ll use $1,2,$ and $3$ for the $y$ -coordinates as shown in the table.

$x=-3$
$x$ $y$ $\left(x,y\right)$
$-3$ $1$ $\left(-3,1\right)$
$-3$ $2$ $\left(-3,2\right)$
$-3$ $3$ $\left(-3,3\right)$

Then plot the points and connect them with a straight line. Notice in [link] that the graph is a vertical line    .

## Vertical line

A vertical line is the graph of an equation that can be written in the form $x=a.$

The line passes through the $x$ -axis at $\left(a,0\right)$ .

Graph the equation $x=2.$ What type of line does it form?

## Solution

The equation has only variable, $x,$ and $x$ is always equal to $2.$ We make a table where $x$ is always $2$ and we put in any values for $y.$

$x=2$
$x$ $y$ $\left(x,y\right)$
$2$ $1$ $\left(2,1\right)$
$2$ $2$ $\left(2,2\right)$
$2$ $3$ $\left(2,3\right)$

Plot the points and connect them as shown. The graph is a vertical line passing through the $x$ -axis at $2.$

Graph the equation: $x=5.$ Graph the equation: $x=-2.$ What if the equation has $y$ but no $x$ ? Let’s graph the equation $y=4.$ This time the $y$ -value is a constant, so in this equation $y$ does not depend on $x.$

To make a table of solutions, write $4$ for all the $y$ values and then choose any values for $x.$

We’ll use $0,2,$ and $4$ for the $x$ -values.

$y=4$
$x$ $y$ $\left(x,y\right)$
$0$ $4$ $\left(0,4\right)$
$2$ $4$ $\left(2,4\right)$
$4$ $4$ $\left(4,4\right)$

Plot the points and connect them, as shown in [link] . This graph is a horizontal line    passing through the $y\text{-axis}$ at $4.$

## Horizontal line

A horizontal line is the graph of an equation that can be written in the form $y=b.$

The line passes through the $y\text{-axis}$ at $\left(0,b\right).$

where we get a research paper on Nano chemistry....?
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
Ali
what are the products of Nano chemistry?
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
revolt
da
Application of nanotechnology in medicine
what is variations in raman spectra for nanomaterials
I only see partial conversation and what's the question here!
what about nanotechnology for water purification
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
why we need to study biomolecules, molecular biology in nanotechnology?
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
why?
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
A soccer field is a rectangle 130 meters wide and 110 meters long. The coach asks players to run from one corner to the other corner diagonally across. What is that distance, to the nearest tenths place.
Jeannette has $5 and$10 bills in her wallet. The number of fives is three more than six times the number of tens. Let t represent the number of tens. Write an expression for the number of fives.
What is the expressiin for seven less than four times the number of nickels
How do i figure this problem out.
how do you translate this in Algebraic Expressions
why surface tension is zero at critical temperature
Shanjida
I think if critical temperature denote high temperature then a liquid stats boils that time the water stats to evaporate so some moles of h2o to up and due to high temp the bonding break they have low density so it can be a reason
s.
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight? By Abby Sharp By Brenna Fike By OpenStax By Jemekia Weeden By John Gabrieli By Joli Julianna By OpenStax By By Jonathan Long By Jonathan Long