<< Chapter < Page Chapter >> Page >

The relationships between the three common temperature scales is shown in [link] . Temperatures on these scales can be converted using the equations in [link] .

Temperature conversions
To convert from . . . Use this equation . . . Also written as . . .
Celsius to Fahrenheit T º F = 9 5 T º C + 32 size 12{T left (°F right )= { {9} over {5} } T left (°C right )+"32"} {} T º F = 9 5 T º C + 32 size 12{T rSub { size 8{°F} } = { {9} over {5} } T rSub { size 8{°C} } +"32"} {}
Fahrenheit to Celsius T º C = 5 9 T º F 32 size 12{T left (°C right )= { {5} over {9} } left [T left (°F right ) - "32" right ]} {} T º C = 5 9 T º F 32 size 12{T rSub { size 8{°C} } = { {5} over {9} } left (T rSub { size 8{°F} } - "32" right )} {}
Celsius to Kelvin T K = T º C + 273 . 15 size 12{T left (K right )=T left (°C right )+"273" "." "15"} {} T K = T º C + 273 . 15 size 12{T rSub { size 8{K} } =T rSub { size 8{°C} } +"273" "." "15"} {}
Kelvin to Celsius T º C = T K 273 . 15 size 12{T left (°C right )=T left (K right ) - "273" "." "15"} {} T º C = T K 273 . 15 size 12{T rSub { size 8{°C} } =T rSub { size 8{K} } - "273" "." "15"} {}
Fahrenheit to Kelvin T K = 5 9 T º F 32 + 273 . 15 size 12{T left (K right )= { {5} over {9} } left [T left (°F right ) - "32" right ]+"273" "." "15"} {} T K = 5 9 T º F 32 + 273 . 15 size 12{T rSub { size 8{K} } = { {5} over {9} } left (T rSub { size 8{°F} } - "32" right )+"273" "." "15"} {}
Kelvin to Fahrenheit T ( º F ) = 9 5 T K 273 . 15 + 32 size 12{T \( °F \) = { {9} over {5} } left [T left (K right ) - "273" "." "15" right ]+"32"} {} T º F = 9 5 T K 273 . 15 + 32 size 12{T rSub { size 8{°F} } = { {9} over {5} } left (T rSub { size 8{K} } - "273" "." "15" right )+"32"} {}

Notice that the conversions between Fahrenheit and Kelvin look quite complicated. In fact, they are simple combinations of the conversions between Fahrenheit and Celsius, and the conversions between Celsius and Kelvin.

Converting between temperature scales: room temperature

“Room temperature” is generally defined to be 25 º C size 12{"25"°C} {} . (a) What is room temperature in º F size 12{°F} {} ? (b) What is it in K?

Strategy

To answer these questions, all we need to do is choose the correct conversion equations and plug in the known values.

Solution for (a)

1. Choose the right equation. To convert from º C size 12{°C} {} to º F size 12{°F} {} , use the equation

T º F = 9 5 T º C + 32 . size 12{T rSub { size 8{°F} } = { {9} over {5} } T rSub { size 8{°C} } +"32" "." } {}

2. Plug the known value into the equation and solve:

T º F = 9 5 25 º C + 32 = 77 º F . size 12{T rSub { size 8{°F} } = { {9} over {5} } "25"°C+"32"="77"°F "." } {}

Solution for (b)

1. Choose the right equation. To convert from º C size 12{°C} {} to K, use the equation

T K = T º C + 273 . 15 . size 12{T rSub { size 8{K} } =T rSub { size 8{°C} } +"273" "." "15" "." } {}

2. Plug the known value into the equation and solve:

T K = 25 º C + 273 . 15 = 298 K . size 12{T rSub { size 8{K} } ="25"°C+"273" "." "15"="298"`K "." } {}

Converting between temperature scales: the reaumur scale

The Reaumur scale is a temperature scale that was used widely in Europe in the 18th and 19th centuries. On the Reaumur temperature scale, the freezing point of water is 0 º R size 12{0°R} {} and the boiling temperature is 80 º R size 12{"80"°R} {} . If “room temperature” is 25 º C size 12{"25"°C} {} on the Celsius scale, what is it on the Reaumur scale?

Strategy

To answer this question, we must compare the Reaumur scale to the Celsius scale. The difference between the freezing point and boiling point of water on the Reaumur scale is 80 º R size 12{"80"°R} {} . On the Celsius scale it is 100 º C size 12{"100"°C} {} . Therefore 100 º C = 80 º R size 12{"100"°C="80"°R} {} . Both scales start at 0 º size 12{0°} {} for freezing, so we can derive a simple formula to convert between temperatures on the two scales.

Solution

1. Derive a formula to convert from one scale to the other:

T º R = 0 . 8 º R º C × T º C . size 12{T rSub { size 8{°R} } = { {0 "." 8°R} over {°C} } times T rSub { size 8{°C} } "." } {}

2. Plug the known value into the equation and solve:

T º R = 0 . 8 º R º C × 25 º C = 20 º R . size 12{T rSub { size 8{°R} } = { {0 "." 8°R} over {°C} } times "25"°C="20"°R "." } {}

Temperature ranges in the universe

[link] shows the wide range of temperatures found in the universe. Human beings have been known to survive with body temperatures within a small range, from 24 º C size 12{"24"°C} {} to 44 º C size 12{"44"°C} {} ( 75 º F size 12{ \( "75"°F} {} to 111 º F size 12{"111"°F} {} ). The average normal body temperature is usually given as 37 . 0 º C size 12{"37" "." 0°C} {} ( 98 . 6 º F size 12{"98" "." 6°F} {} ), and variations in this temperature can indicate a medical condition: a fever, an infection, a tumor, or circulatory problems (see [link] ).

This figure consists of four different infrared thermographs of a person's head and neck, taken when the person's head was positioned at four different angles. The person's face and neck are mostly red and orange, with patches of white, green, and yellow. The red and white colors correspond to hot areas. The person's hair ranges in color from green to light blue to dark blue. The blue color corresponds to cold areas.
This image of radiation from a person’s body (an infrared thermograph) shows the location of temperature abnormalities in the upper body. Dark blue corresponds to cold areas and red to white corresponds to hot areas. An elevated temperature might be an indication of malignant tissue (a cancerous tumor in the breast, for example), while a depressed temperature might be due to a decline in blood flow from a clot. In this case, the abnormalities are caused by a condition called hyperhidrosis. (credit: Porcelina81, Wikimedia Commons)

Questions & Answers

anyone know any internet site where one can find nanotechnology papers?
Damian Reply
research.net
kanaga
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
China
Cied
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Berger describes sociologists as concerned with
Mueller Reply
How we can toraidal magnetic field
Aditya Reply
How we can create polaidal magnetic field
Aditya
4
Mykayuh Reply
Because I'm writing a report and I would like to be really precise for the references
Gre Reply
where did you find the research and the first image (ECG and Blood pressure synchronized)? Thank you!!
Gre Reply
Practice Key Terms 9

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Physics 101. OpenStax CNX. Jan 07, 2013 Download for free at http://legacy.cnx.org/content/col11479/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics 101' conversation and receive update notifications?

Ask