<< Chapter < Page Chapter >> Page >

Magnetic field produced by a current-carrying solenoid

A solenoid    is a long coil of wire (with many turns or loops, as opposed to a flat loop). Because of its shape, the field inside a solenoid can be very uniform, and also very strong. The field just outside the coils is nearly zero. [link] shows how the field looks and how its direction is given by RHR-2.

A diagram of a solenoid. The current runs up from the battery on the left side and spirals around with the solenoid wire such that the current runs upward in the front sections of the solenoid and then down the back. An illustration of the right hand rule 2 shows the thumb pointing up in the direction of the current and the fingers curling around in the direction of the magnetic field. A length wise cutaway of the solenoid shows magnetic field lines densely packed and running from the south pole to the north pole, through the solenoid. Lines outside the solenoid are spaced much farther apart and run from the north pole out around the solenoid to the south pole.
(a) Because of its shape, the field inside a solenoid of length l size 12{l} {} is remarkably uniform in magnitude and direction, as indicated by the straight and uniformly spaced field lines. The field outside the coils is nearly zero. (b) This cutaway shows the magnetic field generated by the current in the solenoid.

The magnetic field inside of a current-carrying solenoid is very uniform in direction and magnitude. Only near the ends does it begin to weaken and change direction. The field outside has similar complexities to flat loops and bar magnets, but the magnetic field strength inside a solenoid    is simply

B = μ 0 nI ( inside a solenoid ) , size 12{B=μ rSub { size 8{0} } ital "nI"` \( "inside a solenoid" \) ,} {}

where n size 12{n} {} is the number of loops per unit length of the solenoid ( n = N / l size 12{ \( n=N/l} {} , with N size 12{N} {} being the number of loops and l size 12{l} {} the length). Note that B size 12{B} {} is the field strength anywhere in the uniform region of the interior and not just at the center. Large uniform fields spread over a large volume are possible with solenoids, as [link] implies.

Calculating field strength inside a solenoid

What is the field inside a 2.00-m-long solenoid that has 2000 loops and carries a 1600-A current?

Strategy

To find the field strength inside a solenoid, we use B = μ 0 nI size 12{B=μ rSub { size 8{0} } ital "nI"} {} . First, we note the number of loops per unit length is

n = N l = 2000 2.00 m = 1000 m 1 = 10 cm 1 . size 12{n rSup { size 8{ - 1} } = { {N} over {l} } = { {"2000"} over {2 "." "00" m} } ="1000"" m" rSup { size 8{ - 1} } ="10"" cm" rSup { size 8{ - 1} } "." } {}

Solution

Substituting known values gives

B = μ 0 nI = × 10 7 T m/A 1000 m 1 1600 A = 2 .01 T.

Discussion

This is a large field strength that could be established over a large-diameter solenoid, such as in medical uses of magnetic resonance imaging (MRI). The very large current is an indication that the fields of this strength are not easily achieved, however. Such a large current through 1000 loops squeezed into a meter’s length would produce significant heating. Higher currents can be achieved by using superconducting wires, although this is expensive. There is an upper limit to the current, since the superconducting state is disrupted by very large magnetic fields.

There are interesting variations of the flat coil and solenoid. For example, the toroidal coil used to confine the reactive particles in tokamaks is much like a solenoid bent into a circle. The field inside a toroid is very strong but circular. Charged particles travel in circles, following the field lines, and collide with one another, perhaps inducing fusion. But the charged particles do not cross field lines and escape the toroid. A whole range of coil shapes are used to produce all sorts of magnetic field shapes. Adding ferromagnetic materials produces greater field strengths and can have a significant effect on the shape of the field. Ferromagnetic materials tend to trap magnetic fields (the field lines bend into the ferromagnetic material, leaving weaker fields outside it) and are used as shields for devices that are adversely affected by magnetic fields, including the Earth’s magnetic field.

Phet explorations: generator

Generate electricity with a bar magnet! Discover the physics behind the phenomena by exploring magnets and how you can use them to make a bulb light.

Generator

Section summary

  • The strength of the magnetic field created by current in a long straight wire is given by
    B = μ 0 I 2 πr ( long straight wire ) ,
    where I size 12{I} {} is the current, r size 12{r} {} is the shortest distance to the wire, and the constant μ 0 = × 10 7 T m/A size 12{μ rSub { size 8{0} } =4π times "10" rSup { size 8{ - 7} } `T cdot "m/A"} {} is the permeability of free space.
  • The direction of the magnetic field created by a long straight wire is given by right hand rule 2 (RHR-2): Point the thumb of the right hand in the direction of current, and the fingers curl in the direction of the magnetic field loops created by it.
  • The magnetic field created by current following any path is the sum (or integral) of the fields due to segments along the path (magnitude and direction as for a straight wire), resulting in a general relationship between current and field known as Ampere’s law.
  • The magnetic field strength at the center of a circular loop is given by
    B = μ 0 I 2 R ( at center of loop ) , size 12{B= { {μ rSub { size 8{0} } I} over {2R} } " " \( "at center of loop" \) ,} {}
    where R size 12{R} {} is the radius of the loop. This equation becomes B = μ 0 nI / ( 2 R ) size 12{B=μ rSub { size 8{0} } ital "nI"/ \( 2R \) } {} for a flat coil of N size 12{N} {} loops. RHR-2 gives the direction of the field about the loop. A long coil is called a solenoid.
  • The magnetic field strength inside a solenoid is
    B = μ 0 nI ( inside a solenoid ) , size 12{B=μ rSub { size 8{0} } ital "nI"" " \( "inside a solenoid" \) ,} {}
    where n size 12{n} {} is the number of loops per unit length of the solenoid. The field inside is very uniform in magnitude and direction.

Conceptual questions

Make a drawing and use RHR-2 to find the direction of the magnetic field of a current loop in a motor (such as in [link] ). Then show that the direction of the torque on the loop is the same as produced by like poles repelling and unlike poles attracting.

Questions & Answers

what is Nano technology ?
Bob Reply
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Berger describes sociologists as concerned with
Mueller Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 9

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, College physics (engineering physics 2, tuas). OpenStax CNX. May 08, 2014 Download for free at http://legacy.cnx.org/content/col11649/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics (engineering physics 2, tuas)' conversation and receive update notifications?

Ask