# 10.8 Flow rate and its relation to velocity  (Page 3/6)

 Page 3 / 6
${n}_{1}{A}_{1}{\overline{v}}_{1}={n}_{2}{A}_{2}{\overline{v}}_{2}\text{,}$

where ${n}_{1}$ and ${n}_{2}$ are the number of branches in each of the sections along the tube.

## Calculating flow speed and vessel diameter: branching in the cardiovascular system

The aorta is the principal blood vessel through which blood leaves the heart in order to circulate around the body. (a) Calculate the average speed of the blood in the aorta if the flow rate is 5.0 L/min. The aorta has a radius of 10 mm. (b) Blood also flows through smaller blood vessels known as capillaries. When the rate of blood flow in the aorta is 5.0 L/min, the speed of blood in the capillaries is about 0.33 mm/s. Given that the average diameter of a capillary is $8.0\phantom{\rule{0.25em}{0ex}}\mu \text{m}$ , calculate the number of capillaries in the blood circulatory system.

Strategy

We can use $Q=A\overline{v}$ to calculate the speed of flow in the aorta and then use the general form of the equation of continuity to calculate the number of capillaries as all of the other variables are known.

Solution for (a)

The flow rate is given by $Q=A\overline{v}$ or $\overline{v}=\frac{Q}{{\mathrm{\pi r}}^{2}}$ for a cylindrical vessel.

Substituting the known values (converted to units of meters and seconds) gives

$\overline{v}=\frac{\left(5.0\phantom{\rule{0.25em}{0ex}}\text{L/min}\right)\left({\text{10}}^{-3}\phantom{\rule{0.25em}{0ex}}{\text{m}}^{3}\text{/L}\right)\left(1\phantom{\rule{0.25em}{0ex}}\text{min/}\text{60}\phantom{\rule{0.25em}{0ex}}\text{s}\right)}{\pi {\left(0\text{.}\text{010 m}\right)}^{2}}=0\text{.}\text{27}\phantom{\rule{0.25em}{0ex}}\text{m/s}.$

Solution for (b)

Using ${n}_{1}{A}_{1}{\overline{v}}_{1}={n}_{2}{A}_{2}{\overline{v}}_{1}$ , assigning the subscript 1 to the aorta and 2 to the capillaries, and solving for ${n}_{2}$ (the number of capillaries) gives ${n}_{2}=\frac{{n}_{1}{A}_{1}{\overline{v}}_{1}}{{A}_{2}{\overline{v}}_{2}}$ . Converting all quantities to units of meters and seconds and substituting into the equation above gives

${n}_{2}=\frac{\left(1\right)\left(\pi \right){\left(\text{10}×{\text{10}}^{-3}\phantom{\rule{0.25em}{0ex}}\text{m}\right)}^{2}\left(0.27 m/s\right)}{\left(\pi \right){\left(4.0×{\text{10}}^{-6}\phantom{\rule{0.25em}{0ex}}\text{m}\right)}^{2}\left(0.33×{\text{10}}^{-3}\phantom{\rule{0.25em}{0ex}}\text{m/s}\right)}=5.0×{\text{10}}^{9}\phantom{\rule{0.25em}{0ex}}\text{capillaries}.$

Discussion

Note that the speed of flow in the capillaries is considerably reduced relative to the speed in the aorta due to the significant increase in the total cross-sectional area at the capillaries. This low speed is to allow sufficient time for effective exchange to occur although it is equally important for the flow not to become stationary in order to avoid the possibility of clotting. Does this large number of capillaries in the body seem reasonable? In active muscle, one finds about 200 capillaries per ${\text{mm}}^{3}$ , or about $\text{200}×{\text{10}}^{6}$ per 1 kg of muscle. For 20 kg of muscle, this amounts to about $4×{\text{10}}^{9}$ capillaries.

## Section summary

• Flow rate $Q$ is defined to be the volume $V$ flowing past a point in time $t$ , or $Q=\frac{V}{t}$ where $V$ is volume and $t$ is time.
• The SI unit of volume is ${\text{m}}^{3}$ .
• Another common unit is the liter (L), which is ${\text{10}}^{-3}\phantom{\rule{0.25em}{0ex}}{\text{m}}^{3}$ .
• Flow rate and velocity are related by $Q=A\overline{v}$ where $A$ is the cross-sectional area of the flow and $\overline{v}$ is its average velocity.
• For incompressible fluids, flow rate at various points is constant. That is,
$\left(\begin{array}{c}{Q}_{1}={Q}_{2}\\ {A}_{1}{\overline{v}}_{1}={A}_{2}{\overline{v}}_{2}\\ {n}_{1}{A}_{1}{\overline{v}}_{1}={n}_{2}{A}_{2}{\overline{v}}_{2}\end{array}}\text{.}$

## Conceptual questions

What is the difference between flow rate and fluid velocity? How are they related?

Many figures in the text show streamlines. Explain why fluid velocity is greatest where streamlines are closest together. (Hint: Consider the relationship between fluid velocity and the cross-sectional area through which it flows.)

Identify some substances that are incompressible and some that are not.

## Problems&Exercises

What is the average flow rate in ${\text{cm}}^{3}\text{/s}$ of gasoline to the engine of a car traveling at 100 km/h if it averages 10.0 km/L?

$\text{2.78}\phantom{\rule{0.25em}{0ex}}{\text{cm}}^{3}\text{/s}$

#### Questions & Answers

Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
why we need to study biomolecules, molecular biology in nanotechnology?
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
why?
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
what does nano mean?
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
for screen printed electrodes ?
SUYASH
What is lattice structure?
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
How we can toraidal magnetic field
How we can create polaidal magnetic field
4
Because I'm writing a report and I would like to be really precise for the references
where did you find the research and the first image (ECG and Blood pressure synchronized)? Thank you!!