<< Chapter < Page Chapter >> Page >
Q = I × t = n × F

Where t is the time in seconds, n the number of moles of electrons, and F is the Faraday constant.

Moles of electrons can be used in stoichiometry problems. The time required to deposit a specified amount of metal might also be requested, as in the second of the following examples.

Converting current to moles of electrons

In one process used for electroplating silver, a current of 10.23 A was passed through an electrolytic cell for exactly 1 hour. How many moles of electrons passed through the cell? What mass of silver was deposited at the cathode from the silver nitrate solution?


Faraday’s constant can be used to convert the charge ( Q ) into moles of electrons ( n ). The charge is the current ( I ) multiplied by the time

n = Q F = 10.23 C s × 1 hr × 60 min hr × 60 s min 9 6,485 C/mol e = 36,830 C 96,485 C/mol e = 0.381 7 mol e

From the problem, the solution contains AgNO 3 , so the reaction at the cathode involves 1 mole of electrons for each mole of silver

cathode: Ag + ( a q ) + e Ag ( s )

The atomic mass of silver is 107.9 g/mol, so

mass Ag = 0.3817 mol e × 1 mol Ag 1 mol e × 107.9 g Ag 1 mol Ag = 4 1.19 g Ag

Check your answer: From the stoichiometry, 1 mole of electrons would produce 1 mole of silver. Less than one-half a mole of electrons was involved and less than one-half a mole of silver was produced.

Check your learning

Aluminum metal can be made from aluminum ions by electrolysis. What is the half-reaction at the cathode? What mass of aluminum metal would be recovered if a current of 2.50 × 10 3 A passed through the solution for 15.0 minutes? Assume the yield is 100%.


Al 3+ ( a q ) + 3 e Al ( s ) ; 7.77 mol Al = 210.0 g Al.

Got questions? Get instant answers now!

Time required for deposition

In one application, a 0.010-mm layer of chromium must be deposited on a part with a total surface area of 3.3 m 2 from a solution of containing chromium(III) ions. How long would it take to deposit the layer of chromium if the current was 33.46 A? The density of chromium (metal) is 7.19 g/cm 3 .


This problem brings in a number of topics covered earlier. An outline of what needs to be done is:

  • If the total charge can be determined, the time required is just the charge divided by the current
  • The total charge can be obtained from the amount of Cr needed and the stoichiometry
  • The amount of Cr can be obtained using the density and the volume Cr required
  • The volume Cr required is the thickness times the area

Solving in steps, and taking care with the units, the volume of Cr required is

volume = ( 0.010 mm × 1 cm 10 mm ) × ( 3.3 m 2 × ( 10,000 cm 2 1 m 2 ) ) = 33 cm 3

Cubic centimeters were used because they match the volume unit used for the density. The amount of Cr is then

mass = volume × density = 33 cm 3 × 7.19 g cm 3 = 237 g Cr
mol Cr = 237 g Cr × 1 mol Cr 52.00 g Cr = 4.56 mol Cr

Since the solution contains chromium(III) ions, 3 moles of electrons are required per mole of Cr. The total charge is then

Q = 4.56 mol Cr × 3 mol e 1 mol Cr × 96485 C mol e = 1.32 × 10 6 C

The time required is then

t = Q I = 1.32 × 10 6 C 33.46 C/s = 3.95 × 10 4 s = 11.0 hr

Check your answer: In a long problem like this, a single check is probably not enough. Each of the steps gives a reasonable number, so things are probably correct. Pay careful attention to unit conversions and the stoichiometry.

Check your learning

What mass of zinc is required to galvanize the top of a 3.00 m × 5.50 m sheet of iron to a thickness of 0.100 mm of zinc? If the zinc comes from a solution of Zn(NO 3 ) 2 and the current is 25.5 A, how long will it take to galvanize the top of the iron? The density of zinc is 7.140 g/cm 3 .


231 g Zn required 446 minutes.

Got questions? Get instant answers now!

Key concepts and summary

Using electricity to force a nonspontaneous process to occur is electrolysis. Electrolytic cells are electrochemical cells with negative cell potentials (meaning a positive Gibbs free energy), and so are nonspontaneous. Electrolysis can occur in electrolytic cells by introducing a power supply, which supplies the energy to force the electrons to flow in the nonspontaneous direction. Electrolysis is done in solutions, which contain enough ions so current can flow. If the solution contains only one material, like the electrolysis of molten sodium chloride, it is a simple matter to determine what is oxidized and what is reduced. In more complicated systems, like the electrolysis of aqueous sodium chloride, more than one species can be oxidized or reduced and the standard reduction potentials are used to determine the most likely oxidation (the half-reaction with the largest [most positive] standard reduction potential) and reduction (the half-reaction with the smallest [least positive]standard reduction potential). Sometimes unexpected half-reactions occur because of overpotential. Overpotential is the difference between the theoretical half-reaction reduction potential and the actual voltage required. When present, the applied potential must be increased, making it possible for a different reaction to occur in the electrolytic cell. The total charge, Q , that passes through an electrolytic cell can be expressed as the current ( I ) multiplied by time ( Q = It ) or as the moles of electrons ( n ) multiplied by Faraday’s constant ( Q = nF ). These relationships can be used to determine things like the amount of material used or generated during electrolysis, how long the reaction must proceed, or what value of the current is required.

Key equations

  • Q = I × t = n × F

Chemistry end of chapter exercises

Identify the reaction at the anode, reaction at the cathode, the overall reaction, and the approximate potential required for the electrolysis of the following molten salts. Assume standard states and that the standard reduction potentials in Appendix L are the same as those at each of the melting points. Assume the efficiency is 100%.

(a) CaCl 2

(b) LiH

(c) AlCl 3

(d) CrBr 3

Got questions? Get instant answers now!

What mass of each product is produced in each of the electrolytic cells of the previous problem if a total charge of 3.33 × 10 5 C passes through each cell? Assume the voltage is sufficient to perform the reduction.

(a) mass Ca = 69.1 g mass Cl 2 = 122 g ; (b) mass Li = 23.9 g mass H 2 = 3.48 g ; (c) mass Al = 31.0 g mass Cl 2 = 122 g ; (d) mass Cr = 59.8 g mass Br 2 = 276 g

Got questions? Get instant answers now!

How long would it take to reduce 1 mole of each of the following ions using the current indicated? Assume the voltage is sufficient to perform the reduction.

(a) Al 3+ , 1.234 A

(b) Ca 2+ , 22.2 A

(c) Cr 5+ , 37.45 A

(d) Au 3+ , 3.57 A

Got questions? Get instant answers now!

A current of 2.345 A passes through the cell shown in [link] for 45 minutes. What is the volume of the hydrogen collected at room temperature if the pressure is exactly 1 atm? Assume the voltage is sufficient to perform the reduction. (Hint: Is hydrogen the only gas present above the water?)

0.79 L

Got questions? Get instant answers now!

An irregularly shaped metal part made from a particular alloy was galvanized with zinc using a Zn(NO 3 ) 2 solution. When a current of 2.599 A was used, it took exactly 1 hour to deposit a 0.01123-mm layer of zinc on the part. What was the total surface area of the part? The density of zinc is 7.140 g/cm 3 . Assume the efficiency is 100%.

Got questions? Get instant answers now!

Questions & Answers

Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
what school?
biomolecules are e building blocks of every organics and inorganic materials.
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
sciencedirect big data base
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
characteristics of micro business
for teaching engĺish at school how nano technology help us
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
what is the actual application of fullerenes nowadays?
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
is Bucky paper clear?
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Do you know which machine is used to that process?
how to fabricate graphene ink ?
for screen printed electrodes ?
What is lattice structure?
s. Reply
of graphene you mean?
or in general
in general
Graphene has a hexagonal structure
On having this app for quite a bit time, Haven't realised there's a chat room in it.
what is biological synthesis of nanoparticles
Sanket Reply
how do you find theWhat are the wavelengths and energies per photon of two lines
caroline Reply
The eyes of some reptiles are sensitive to 850 nm light. If the minimum energy to trigger the receptor at this wavelength is 3.15 x 10-14 J, what is the minimum number of 850 nm photons that must hit the receptor in order for it to be triggered?
razzyd Reply
A teaspoon of the carbohydrate sucrose contains 16 calories, what is the mass of one teaspoo of sucrose if the average number of calories for carbohydrate is 4.1 calories/g?
ifunanya Reply
4. On the basis of dipole moments and/or hydrogen bonding, explain in a qualitative way the differences in the boiling points of acetone (56.2 °C) and 1-propanol (97.4 °C), which have similar molar masses
Kyndall Reply
Calculate the bond order for an ion with this configuration: (?2s)2(??2s)2(?2px)2(?2py,?2pz)4(??2py,??2pz)3
Gabe Reply
Which of the following will increase the percent of HF that is converted to the fluoride ion in water? (a) addition of NaOH (b) addition of HCl (c) addition of NaF
Tarun Reply
Practice Key Terms 4

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Ut austin - principles of chemistry. OpenStax CNX. Mar 31, 2016 Download for free at http://legacy.cnx.org/content/col11830/1.13
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Ut austin - principles of chemistry' conversation and receive update notifications?