# 10.5 Angular momentum and its conservation  (Page 3/7)

 Page 3 / 7

What we have here is, in fact, another conservation law. If the net torque is zero , then angular momentum is constant or conserved . We can see this rigorously by considering $\text{net}\phantom{\rule{0.25em}{0ex}}\tau =\frac{\text{Δ}L}{\text{Δ}t}$ for the situation in which the net torque is zero. In that case,

$\text{net}\tau =0$

implying that

$\frac{\text{Δ}L}{\text{Δ}t}=0.$

If the change in angular momentum $\text{Δ}L$ is zero, then the angular momentum is constant; thus,

$L=\text{constant}\phantom{\rule{0.25em}{0ex}}\left(\text{net}\phantom{\rule{0.25em}{0ex}}\tau =0\right)$

or

$L=L\prime \text{}\left(\text{net}\tau =0\right).$

These expressions are the law of conservation of angular momentum    . Conservation laws are as scarce as they are important.

An example of conservation of angular momentum is seen in [link] , in which an ice skater is executing a spin. The net torque on her is very close to zero, because there is relatively little friction between her skates and the ice and because the friction is exerted very close to the pivot point. (Both $F$ and $r$ are small, and so $\tau$ is negligibly small.) Consequently, she can spin for quite some time. She can do something else, too. She can increase her rate of spin by pulling her arms and legs in. Why does pulling her arms and legs in increase her rate of spin? The answer is that her angular momentum is constant, so that

$L=L\prime .$

Expressing this equation in terms of the moment of inertia,

$\mathrm{I\omega }=I\prime \omega \prime ,$

where the primed quantities refer to conditions after she has pulled in her arms and reduced her moment of inertia. Because $I\prime$ is smaller, the angular velocity $\omega \prime$ must increase to keep the angular momentum constant. The change can be dramatic, as the following example shows.

## Calculating the angular momentum of a spinning skater

Suppose an ice skater, such as the one in [link] , is spinning at 0.800 rev/ s with her arms extended. She has a moment of inertia of $2\text{.}\text{34}\phantom{\rule{0.25em}{0ex}}\text{kg}\cdot {\text{m}}^{2}$ with her arms extended and of $0\text{.}\text{363}\phantom{\rule{0.25em}{0ex}}\text{kg}\cdot {\text{m}}^{2}$ with her arms close to her body. (These moments of inertia are based on reasonable assumptions about a 60.0-kg skater.) (a) What is her angular velocity in revolutions per second after she pulls in her arms? (b) What is her rotational kinetic energy before and after she does this?

Strategy

In the first part of the problem, we are looking for the skater’s angular velocity $\omega \prime$ after she has pulled in her arms. To find this quantity, we use the conservation of angular momentum and note that the moments of inertia and initial angular velocity are given. To find the initial and final kinetic energies, we use the definition of rotational kinetic energy given by

${\text{KE}}_{\text{rot}}=\frac{1}{2}{\mathrm{I\omega }}^{2}.$

Solution for (a)

Because torque is negligible (as discussed above), the conservation of angular momentum given in $\mathrm{I\omega }=I\prime \omega \prime$ is applicable. Thus,

$L=L\prime$

or

$\mathrm{I\omega }=I\prime \omega \prime$

Solving for $\omega \prime$ and substituting known values into the resulting equation gives

$\begin{array}{lll}\omega \prime & =& \frac{I}{I\prime }\omega =\left(\frac{\text{2.34 kg}\cdot {m}^{2}}{0\text{.363 kg}\cdot {m}^{2}}\right)\left(\text{0.800 rev/s}\right)\\ & =& \text{}\text{5.16 rev/s.}\end{array}$

#### Questions & Answers

Calculate the work done by an 85.0-kg man who pushes a crate 4.00 m up along a ramp that makes an angle of 20.0º20.0º with the horizontal. (See [link] .) He exerts a force of 500 N on the crate parallel to the ramp and moves at a constant speed. Be certain to include the work he does on the crate an
What is thermal heat all about
why uniform circular motion is called a periodic motion?.
when a train start from A & it returns at same station A . what is its acceleration?
what is distance of A to B of the stations and what is the time taken to reach B from A
BELLO
the information provided is not enough
aliyu
Hmmmm maybe the question is logical
yusuf
where are the parameters for calculation
HENRY
there is enough information to calculate an AVERAGE acceleration
Kwok
mistake, there is enough information to calculate an average velocity
Kwok
~\
Abel
what is the unit of momentum
Abel
wha are the types of radioactivity ?
what are the types of radioactivity
Worku
what is static friction
It is the opposite of kinetic friction
Mark
static fiction is friction between two surfaces in contact an none of sliding over on another, while Kinetic friction is friction between sliding surfaces in contact.
MINDERIUM
I don't get it,if it's static then there will be no friction.
author
It means that static friction is that friction that most be overcome before a body can move
kingsley
static friction is a force that keeps an object from moving, and it's the opposite of kinetic friction.
author
It is a force a body must overcome in order for the body to move.
Eboh
If a particle accelerator explodes what happens
Eboh
why we see the edge effect in case of the field lines of capacitor?
Arnab
what is wave
what is force
Muhammed
force is something which is responsible for the object to change its position
MINDERIUM
more technically it is the product of mass of an object and Acceleration produced in it
MINDERIUM
wave is disturbance in any medium
iqra
energy is distributed in any medium through particles of medium.
iqra
If a particle accelerator explodes what happens
we have to first figure out .... wats a particle accelerator first
Teh
What is surface tension
The resistive force of surface.
iqra
Who can tutor me on simple harmonic motion
on both a string and peldulum?
Anya
spring*
Anya
Yea
yusuf
Do you have a chit-chat contact
yusuf
I dont have social media but i do have an email?
Anya
Which is
yusuf
Where are you chatting from
yusuf
I don't understand the basics of this group
Jimmy
teach him SHM init
Anya
Simple harmonic motion
yusuf
how.an.equipotential.line is two dimension and equipotential surface is three dimension ?
definition of mass of conversion
Force equals mass time acceleration. Weight is a force and it can replace force in the equation. The acceleration would be gravity, which is an acceleration. To change from weight to mass divide by gravity (9.8 m/s^2).
Marisa
how many subject is in physics
the write question should be " How many Topics are in O- Level Physics, or other branches of physics.
effiom
how many topic are in physics
Praise
Praise what level are you
yusuf
If u are doing a levels in your first year you do AS topics therefore you do 5 big topic i.e particles radiation, waves and optics, mechanics,materials, electricity. After that you do A level topics like Specific Harmonic motion circular motion astrophysics depends really
Anya
Yeah basics of physics prin8
yusuf
Heat nd Co for a level
yusuf
yh I need someone to explain something im tryna solve . I'll send the question if u down for it
a ripple tank experiment a vibrating plane is used to generate wrinkles in the water .if the distance between two successive point is 3.5cm and the wave travel a distance of 31.5cm find the frequency of the vibration
Tamdy
hallow
Boniface
Boniface
the range of objects and phenomena studied in physics is
I don't know please give the answer
Boniface