# 10.3 Problems on functions of random variables  (Page 3/3)

${f}_{XY}\left(t,u\right)=\frac{3}{88}\left(2t+3{u}^{2}\right)$ for $0\le t\le 2$ , $0\le u\le 1+t$ (see Exercise 15 from "Problems on Random Vectors and Joint Distributions").

$Z={I}_{\left[0,1\right]}\left(X\right)4X+{I}_{\left(1,2\right]}\left(X\right)\left(X+Y\right)$

Determine $P\left(Z\le 2\right)$

$P\left(Z\le 2\right)=P\left(Z\in Q=Q1M1\bigvee Q2M2\right),\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\text{where}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}M1=\left\{\left(t,u\right):0\le t\le 1,\phantom{\rule{0.277778em}{0ex}}0\le u\le 1+t\right\}$
$M2=\left\{\left(t,u\right):1
$Q1=\left\{\left(t,u\right):0\le t\le 1/2\right\},\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}Q2=\left\{\left(t,u\right):u\le 2-t\right\}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\text{(see}\phantom{\rule{4.pt}{0ex}}\text{figure)}$
$P=\frac{3}{88}{\int }_{0}^{1/2}{\int }_{0}^{1+t}\left(2t+3{u}^{2}\right)\phantom{\rule{0.166667em}{0ex}}dudt+\frac{3}{88}{\int }_{1}^{2}{\int }_{0}^{2-t}\left(2t+3{u}^{2}\right)\phantom{\rule{0.166667em}{0ex}}dudt=\frac{563}{5632}$
tuappr Enter matrix [a b]of X-range endpoints [0 2] Enter matrix [c d]of Y-range endpoints [0 3] Enter number of X approximation points 200Enter number of Y approximation points 300 Enter expression for joint density (3/88)*(2*t + 3*u.^2).*(u<=1+t) Use array operations on X, Y, PX, PY, t, u, and PG = 4*t.*(t<=1) + (t+u).*(t>1); [Z,PZ]= csort(G,P); PZ2 = (Z<=2)*PZ' PZ2 = 0.1010 % Theoretical = 563/5632 = 0.1000

${f}_{XY}\left(t,u\right)=\frac{24}{11}tu$ for $0\le t\le 2$ , $0\le u\le min\left\{1,2-t\right\}$ (see Exercise 17 from "Problems on Random Vectors and Joint Distributions").

$Z={I}_{M}\left(X,Y\right)\frac{1}{2}X+{I}_{{M}^{c}}\left(X,Y\right){Y}^{2},\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}M=\left\{\left(t,u\right):u>t\right\}$

Determine $P\left(Z\le 1/4\right)$ .

$P\left(Z\le 1/4\right)=P\left(\left(X,Y\right)\in {M}_{1}{Q}_{1}\bigvee {M}_{2}{Q}_{2}\right),\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}{M}_{1}=\left\{\left(t,u\right):0\le t\le u\le 1\right\}$
${M}_{2}=\left\{\left(t,u\right):0\le t\le 2,\phantom{\rule{0.277778em}{0ex}}0\le t\le min\left(t,2-t\right)\right\}$
${Q}_{1}=\left\{\left(t,u\right):t\le 1/2\right\}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}{Q}_{2}=\left\{\left(t,u\right):u\le 1/2\right\}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\text{(see}\phantom{\rule{4.pt}{0ex}}\text{figure)}$
$P=\frac{24}{11}{\int }_{0}^{1/2}{\int }_{0}^{1}tu\phantom{\rule{0.166667em}{0ex}}dudt+\frac{24}{11}{\int }_{1/2}^{3/2}{\int }_{0}^{1/2}tu\phantom{\rule{0.166667em}{0ex}}dudt+\frac{24}{11}{\int }_{3/2}^{2}{\int }_{0}^{2-t}tu\phantom{\rule{0.166667em}{0ex}}dudt=\frac{85}{176}$
tuappr Enter matrix [a b]of X-range endpoints [0 2] Enter matrix [c d]of Y-range endpoints [0 1] Enter number of X approximation points 400Enter number of Y approximation points 200 Enter expression for joint density (24/11)*t.*u.*(u<=min(1,2-t)) Use array operations on X, Y, PX, PY, t, u, and PG = 0.5*t.*(u>t) + u.^2.*(u<t); [Z,PZ]= csort(G,P); pp = (Z<=1/4)*PZ' pp = 0.4844 % Theoretical = 85/176 = 0.4830

${f}_{XY}\left(t,u\right)=\frac{3}{23}\left(t+2u\right)$ for $0\le t\le 2$ , $0\le u\le max\left\{2-t,t\right\}$ (see Exercise 18 from "Problems on Random Vectors and Joint Distributions").

$Z={I}_{M}\left(X,Y\right)\left(X+Y\right)+{I}_{{M}^{c}}\left(X,Y\right)2Y,\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}M=\left\{\left(t,u\right):max\left(t,u\right)\le 1\right\}$

Determine $P\left(Z\le 1\right)$ .

$P\left(Z\le 1\right)=P\left(\left(X,Y\right)\in {M}_{1}{Q}_{1}\bigvee {M}_{2}{Q}_{2}\right),\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}{M}_{1}=\left\{\left(t,u\right):0\le t\le 1,\phantom{\rule{0.277778em}{0ex}}0\le u\le 1-t\right\}$
${M}_{2}=\left\{\left(t,u\right):1\le t\le 2,\phantom{\rule{0.277778em}{0ex}}0\le u\le t\right\}$
${Q}_{1}=\left\{\left(t,u\right):u\le 1-t\right\}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}{Q}_{2}=\left\{\left(t,u\right):u\le 1/2\right\}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\text{(see}\phantom{\rule{4.pt}{0ex}}\text{figure)}$
$P=\frac{3}{23}{\int }_{0}^{1}{\int }_{0}^{1-t}\left(t+2u\right)\phantom{\rule{0.166667em}{0ex}}dudt+\frac{3}{23}{\int }_{1}^{2}{\int }_{0}^{1/2}\left(t+2u\right)\phantom{\rule{0.166667em}{0ex}}dudt=\frac{9}{46}$
tuappr Enter matrix [a b]of X-range endpoints [0 2] Enter matrix [c d]of Y-range endpoints [0 2] Enter number of X approximation points 300Enter number of Y approximation points 300 Enter expression for joint density (3/23)*(t + 2*u).*(u<=max(2-t,t)) Use array operations on X, Y, PX, PY, t, u, and PM = max(t,u)<= 1; G = M.*(t + u) + (1 - M)*2.*u;p = total((G<=1).*P) p = 0.1960 % Theoretical = 9/46 = 0.1957

${f}_{XY}\left(t,u\right)=\frac{12}{179}\left(3{t}^{2}+u\right)$ , for $0\le t\le 2$ , $0\le u\le min\left\{2,3-t\right\}$ (see Exercise 19 from "Problems on Random Vectors and Joint Distributions").

$Z={I}_{M}\left(X,Y\right)\left(X+Y\right)+{I}_{{M}^{c}}\left(X,Y\right)2{Y}^{2},\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}M=\left\{\left(t,u\right):t\le 1,\phantom{\rule{0.277778em}{0ex}}u\ge 1\right\}$

Determine $P\left(Z\le 2\right)$ .

$P\left(Z\le 2\right)=P\left(\left(,Y\right)\in {M}_{1}{Q}_{1}\bigvee \left({M}_{2}\bigvee {M}_{3}\right){Q}_{2}\right),\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}{M}_{1}=\left\{\left(t,u\right):0\le t\le 1,\phantom{\rule{0.277778em}{0ex}}1\le u\le 2\right\}$
${M}_{2}=\left\{\left(t,u\right):0\le t\le 1,\phantom{\rule{0.277778em}{0ex}}0\le u\le 1\right\}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}{M}_{3}=\left\{\left(t,u\right):1\le t\le 2,\phantom{\rule{0.277778em}{0ex}}0\le u\le 3-t\right\}$
${Q}_{1}=\left\{\left(t,u\right):u\le 1-t\right\}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}{Q}_{2}=\left\{\left(t,u\right):u\le 1/2\right\}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\text{(see}\phantom{\rule{4.pt}{0ex}}\text{figure)}$
$P=\frac{12}{179}{\int }_{0}^{1}{\int }_{0}^{2-t}\left(3{t}^{2}+u\right)\phantom{\rule{0.166667em}{0ex}}dudt+\frac{12}{179}{\int }_{1}^{2}{\int }_{0}^{1}\left(3{t}^{2}+u\right)\phantom{\rule{0.166667em}{0ex}}dudt=\frac{119}{179}$
tuappr Enter matrix [a b]of X-range endpoints [0 2] Enter matrix [c d]of Y-range endpoints [0 2] Enter number of X approximation points 300Enter number of Y approximation points 300 Enter expression for joint density (12/179)*(3*t.^2 + u).*(u<=min(2,3-t)) Use array operations on X, Y, PX, PY, t, u, and PM = (t<=1)&(u>=1); Z = M.*(t + u) + (1 - M)*2.*u.^2;G = M.*(t + u) + (1 - M)*2.*u.^2; p = total((G<=2).*P) p = 0.6662 % Theoretical = 119/179 = 0.6648

${f}_{XY}\left(t,u\right)=\frac{12}{227}\left(3t+2tu\right)$ , for $0\le t\le 2$ , $0\le u\le min\left\{1+t,2\right\}$ (see Exercise 20 from "Problems on Random Variables and Joint Distributions")

$Z={I}_{M}\left(X,Y\right)X+{I}_{{M}^{c}}\left(X,Y\right)\frac{Y}{X},\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}M=\left\{\left(t,u\right):u\le min\left(1,2-t\right)\right\}$

Detemine $P\left(Z\le 1\right)$ .

$P\left(Z\le 1\right)=P\left(\left(X,Y\right)\in {M}_{1}{Q}_{1}\bigvee {M}_{2}{Q}_{2}\right),\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}{M}_{1}=M,\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}{M}_{2}={M}^{c}$
${Q}_{1}=\left\{\left(t,u\right):0\le t\le 1\right\}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}{Q}_{2}=\left\{\left(t,u\right):u\le t\right\}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\text{(see}\phantom{\rule{4.pt}{0ex}}\text{figure)}$
$P=\frac{12}{227}{\int }_{0}^{1}{\int }_{0}^{1}\left(3t+2tu\right)\phantom{\rule{0.166667em}{0ex}}dudt+\frac{12}{227}{\int }_{1}^{2}{\int }_{2-t}^{t}\left(3t+2tu\right)\phantom{\rule{0.166667em}{0ex}}dudt=\frac{124}{227}$
tuappr Enter matrix [a b]of X-range endpoints [0 2] Enter matrix [c d]of Y-range endpoints [0 2] Enter number of X approximation points 400Enter number of Y approximation points 400 Enter expression for joint density (12/227)*(3*t+2*t.*u).*(u<=min(1+t,2)) Use array operations on X, Y, PX, PY, t, u, and PQ = (u<=1).*(t<=1) + (t>1).*(u>=2-t).*(u<=t); P = total(Q.*P)P = 0.5478 % Theoretical = 124/227 = 0.5463

The class $\left\{X,\phantom{\rule{0.166667em}{0ex}}Y,\phantom{\rule{0.166667em}{0ex}}Z\right\}$ is independent.

$X=-2{I}_{A}+{I}_{B}+3{I}_{C}$ . Minterm probabilities are (in the usual order)

$0.255\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}0.025\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}0.375\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}0.045\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}0.108\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}0.012\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}0.162\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}0.018$

$Y={I}_{D}+3{I}_{E}+{I}_{F}-3$ . The class $\left\{D,\phantom{\rule{0.166667em}{0ex}}E,\phantom{\rule{0.166667em}{0ex}}F\right\}$ is independent with

$P\left(D\right)=0.32\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}P\left(E\right)=0.56\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}P\left(F\right)=0.40$

Z has distribution

 Value -1.3 1.2 2.7 3.4 5.8 Probability 0.12 0.24 0.43 0.13 0.08

Determine $P\left({X}^{2}+3X{Y}^{2}>3Z\right)$ .

% file npr10_16.m Data for [link] cx = [-2 1 3 0];pmx = 0.001*[255 25 375 45 108 12 162 18];cy = [1 3 1 -3];pmy = minprob(0.01*[32 56 40]);Z = [-1.3 1.2 2.7 3.4 5.8];PZ = 0.01*[12 24 43 13 8];disp('Data are in cx, pmx, cy, pmy, Z, PZ') npr10_16 % Call for dataData are in cx, pmx, cy, pmy, Z, PZ [X,PX]= canonicf(cx,pmx); [Y,PY]= canonicf(cy,pmy); icalc3Enter row matrix of X-values X Enter row matrix of Y-values YEnter row matrix of Z-values Z Enter X probabilities PXEnter Y probabilities PY Enter Z probabilities PZUse array operations on matrices X, Y, Z, PX, PY, PZ, t, u, v, and PM = t.^2 + 3*t.*u.^2>3*v; PM = total(M.*P)PM = 0.3587

The simple random variable X has distribution

$X=\left[-3.1\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}-0.5\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}1.2\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}2.4\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}3.7\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}4.9\right]\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}PX=\left[0.15\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}0.22\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}0.33\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}0.12\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}0.11\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{0.277778em}{0ex}}0.07\right]$
1. Plot the distribution function F X and the quantile function Q X .
2. Take a random sample of size $n=10,000$ . Compare the relative frequency for each value with the probability that value is taken on.
X = [-3.1 -0.5 1.2 2.4 3.7 4.9];PX = 0.01*[15 22 33 12 11 7];ddbn Enter row matrix of VALUES XEnter row matrix of PROBABILITIES PX % Plot not reproduced here dquanplotEnter VALUES for X X Enter PROBABILITIES for X PX % Plot not reproduced hererand('seed',0) % Reset random number generator dsample % for comparison purposesEnter row matrix of VALUES X Enter row matrix of PROBABILITIES PXSample size n 10000 Value Prob Rel freq-3.1000 0.1500 0.1490 -0.5000 0.2200 0.21641.2000 0.3300 0.3340 2.4000 0.1200 0.11843.7000 0.1100 0.1070 4.9000 0.0700 0.0752Sample average ex = 0.8792 Population mean E[X]= 0.859 Sample variance vx = 5.146Population variance Var[X] = 5.112

#### Questions & Answers

what are the products of Nano chemistry?
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
Preparation and Applications of Nanomaterial for Drug Delivery
Application of nanotechnology in medicine
what is variations in raman spectra for nanomaterials
I only see partial conversation and what's the question here!
what about nanotechnology for water purification
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
what is the stm
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
why we need to study biomolecules, molecular biology in nanotechnology?
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
why?
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
research.net
kanaga
sciencedirect big data base
Ernesto
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
A fair die is tossed 180 times. Find the probability P that the face 6 will appear between 29 and 32 times inclusive