<< Chapter < Page Chapter >> Page >
  • Define density.
  • Calculate the mass of a reservoir from its density.
  • Compare and contrast the densities of various substances.

Which weighs more, a ton of feathers or a ton of bricks? This old riddle plays with the distinction between mass and density. A ton is a ton, of course; but bricks have much greater density than feathers, and so we are tempted to think of them as heavier. (See [link] .)

Density , as you will see, is an important characteristic of substances. It is crucial, for example, in determining whether an object sinks or floats in a fluid. Density is the mass per unit volume of a substance or object. In equation form, density is defined as

ρ = m V , size 12{ρ= { {m} over {V} } } {}

where the Greek letter ρ size 12{ρ} {} (rho) is the symbol for density, m size 12{m} {} is the mass, and V size 12{V} {} is the volume occupied by the substance.

Density

Density is mass per unit volume.

ρ = m V , size 12{ρ= { {m} over {V} } } {}

where ρ size 12{ρ} {} is the symbol for density, m size 12{m} {} is the mass, and V size 12{V} {} is the volume occupied by the substance.

In the riddle regarding the feathers and bricks, the masses are the same, but the volume occupied by the feathers is much greater, since their density is much lower. The SI unit of density is kg/m 3 size 12{"kg/m" rSup { size 8{3} } } {} , representative values are given in [link] . The metric system was originally devised so that water would have a density of 1 g/cm 3 size 12{1`"g/cm" rSup { size 8{3} } } {} , equivalent to 10 3 kg/m 3 size 12{"10" rSup { size 8{3} } `"kg/m" rSup { size 8{3} } } {} . Thus the basic mass unit, the kilogram, was first devised to be the mass of 1000 mL of water, which has a volume of 1000 cm 3 .

Densities of various substances
Substance ρ ( 10 3 kg/m 3 or g/mL ) size 12{ρ` \( "10" rSup { size 8{3} } `"kg/m" rSup { size 8{3} } `"or"`"g/mL" \) } {} Substance ρ ( 10 3 kg/m 3 or g/mL ) size 12{ρ` \( "10" rSup { size 8{3} } `"kg/m" rSup { size 8{3} } `"or"`"g/mL" \) } {} Substance ρ ( 10 3 kg/m 3 or g/mL ) size 12{ρ` \( "10" rSup { size 8{3} } `"kg/m" rSup { size 8{3} } `"or"`"g/mL" \) } {}
Solids Liquids Gases
Aluminum 2.7 Water (4ºC) 1.000 Air 1 . 29 × 10 3 size 12{1 "." "29" times "10" rSup { size 8{ - 3} } } {}
Brass 8.44 Blood 1.05 Carbon dioxide 1 . 98 × 10 3 size 12{1 "." "98" times "10" rSup { size 8{ - 3} } } {}
Copper (average) 8.8 Sea water 1.025 Carbon monoxide 1 . 25 × 10 3 size 12{1 "." "25" times "10" rSup { size 8{ - 3} } } {}
Gold 19.32 Mercury 13.6 Hydrogen 0 . 090 × 10 3 size 12{0 "." "090" times "10" rSup { size 8{ - 3} } } {}
Iron or steel 7.8 Ethyl alcohol 0.79 Helium 0 . 18 × 10 3 size 12{0 "." "18" times "10" rSup { size 8{ - 3} } } {}
Lead 11.3 Petrol 0.68 Methane 0 . 72 × 10 3 size 12{0 "." "72" times "10" rSup { size 8{ - 3} } } {}
Polystyrene 0.10 Glycerin 1.26 Nitrogen 1 . 25 × 10 3 size 12{1 "." "25" times "10" rSup { size 8{ - 3} } } {}
Tungsten 19.30 Olive oil 0.92 Nitrous oxide 1 . 98 × 10 3 size 12{1 "." "98" times "10" rSup { size 8{ - 3} } } {}
Uranium 18.70 Oxygen 1 . 43 × 10 3 size 12{1 "." "43" times "10" rSup { size 8{ - 3} } } {}
Concrete 2.30–3.0 Steam 100º C size 12{ left ("100""°C" right )} {} 0 . 60 × 10 3 size 12{0 "." "60" times "10" rSup { size 8{ - 3} } } {}
Cork 0.24
Glass, common (average) 2.6
Granite 2.7
Earth’s crust 3.3
Wood 0.3–0.9
Ice (0°C) 0.917
Bone 1.7–2.0
A pile of feathers measuring a ton and a ton of bricks are placed on either side of a plank that is balanced on a small support.
A ton of feathers and a ton of bricks have the same mass, but the feathers make a much bigger pile because they have a much lower density.

As you can see by examining [link] , the density of an object may help identify its composition. The density of gold, for example, is about 2.5 times the density of iron, which is about 2.5 times the density of aluminum. Density also reveals something about the phase of the matter and its substructure. Notice that the densities of liquids and solids are roughly comparable, consistent with the fact that their atoms are in close contact. The densities of gases are much less than those of liquids and solids, because the atoms in gases are separated by large amounts of empty space.

Take-home experiment sugar and salt

A pile of sugar and a pile of salt look pretty similar, but which weighs more? If the volumes of both piles are the same, any difference in mass is due to their different densities (including the air space between crystals). Which do you think has the greater density? What values did you find? What method did you use to determine these values?

Questions & Answers

Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
How we can toraidal magnetic field
Aditya Reply
How we can create polaidal magnetic field
Aditya
4
Mykayuh Reply
Because I'm writing a report and I would like to be really precise for the references
Gre Reply
where did you find the research and the first image (ECG and Blood pressure synchronized)? Thank you!!
Gre Reply
Practice Key Terms 1

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Physics 101. OpenStax CNX. Jan 07, 2013 Download for free at http://legacy.cnx.org/content/col11479/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics 101' conversation and receive update notifications?

Ask